Зачетная задача (18) (1114190), страница 3
Текст из файла (страница 3)
>hklhbgkl\hfi_j\h]hf_lh^Zy\ey_lky\hafh`ghklvihqlbihegh]hhl^_e_gbyf_^bg_ihkj_^kl\_gghijbjZkl\hj_gbbg_^hklZldhf±\hafh`ghklvg_ihegh]hi_j_oh^ZZexfbgby\jZkl\hjIj_-13bfms_kl\h\lhjh]hf_lh^Z±ihegh_jZkl\hj_gb_h[jZapZF_lh^jZa^_e_gby±hkZ`^_gb_ZffbZdhfkihke_^mxsbfi_j_hkZ`^_gb_f.>ey dhebq_kl\_ggh]h hij_^_e_gby j_r_gh [ueh bkihevah\Zlv ^\Z kihkh[Z h[jZlgh_dhfie_dkhghf_ljbq_kdh_ lbljh\Zgb_ jZkl\hjZ h[jZapZ \ szehqb jZkl\hjhf kheb f_^b kI:Gb]jZ\bf_ljbq_kdh_hij_^_e_gb_hkZ`^_gb_f]b^jhdkb^ZZexfbgbyZffbZdhfbajZkl\hjZh[jZapZ\dbkehlZo144.
Wdki_jbf_glZevgZyqZklv=jZ\bf_ljbq_kdh_hij_^_e_gb_ZexfbgbyKo_fZZgZebaZJZkqzlb\a\_rb\Zgb_gZ\_kdbh[jZapZIjb[ebabl_evgh_kh^_j`Zgb_Zexfbgby\kieZ\_±HkZ^hd]b^jhdkb^ZZexfbgbyZfhjnguc ihwlhfm hilbfZevgZy fZkkZ ]jZ\bf_ljbq_kdhc nhjfu m = 0,07 – ] =jZ\bf_ljbq_kdbc nZdlhj F = <_ebqbgm gZ\_kdb jZkkqblu\Zxl ih nhjfme_g=mF0,1⋅ 0,5292100 =100 ≈ 0, 0962 ]55P<a\_rb\Zgb_gZ\_kdbFZkkZ[xdkZkFZkkZimklh]hh[jZaphf][xdkZ]123,514823,3554223,515123,3551323,514923,3553FZkkZ[xdkZkh[jZaphf]FZkkZimklh]h[xdkZ]FZkkZgZ\_kdb]15F_lh^bdZjZkl\hj_gbyLhqgh\a\_r_ggmxgZ\_kdmkieZ\Zi_j_ghkyl\obfbq_kdbcklZdZggZfeb^h[Z\eyxlkf_kvfedhgp_gljbjh\ZgghcHCl bfeFHNO3.
Hklhjh`ghgZ]j_\Zxlijbihklhygghf i_j_f_rb\Zgbb ^h ij_djZs_gby \u^_e_gby ]ZaZ b ihegh]h jZkl\hj_gby h[jZapZAZl_fhoeZ`^ZxlbjZa[Z\eyxl\h^hc^hfeF_lh^bdZboh^hij_^_e_gbyF_lh^bdZhij_^_e_gbybkke_^m_fucjZkl\hjgZ]j_\Zxlihqlb^hdbi_gby\\h^ylg_kdhevdh dZi_ev f_lbeh\h]h djZkgh]h b ba [xj_ldb ^h[Z\eyxl ih dZieyf jZkl\hj ZffbZdZ^hbaf_g_gbyhdjZkdbbadjZkghc\`zelmx<h\j_fyijb[Z\e_gbyZffbZdZjZkl\hjg_ij_ju\gh i_j_f_rb\Zxl GZ]j_\Zxl jZkl\hj fbg ^Zxl hlklhylvky hkZ^dm \ l_q_gb_ fbgbhlnbevljh\u\ZxlgZnbevlj©djZkgZye_glZªIheghklvxi_j_ghkylhkZ^hdgZnbevljb, ^h[Z\eyxl F HCl, jZkl\hjyxl hkZ^hd gZ nbevlj_ kh[bjZy jZkl\hj \ qbkluc klZdZgIh\lhjyxlhi_jZpbxhkZ`^_gbyjZkl\hj\gh\vhlnbevljh\u\ZxlgZnbevlj©kbgyye_glZªIjhfu\ZxlgufjZkl\hjh\NH4NO3, g_cljZebah\ZggucZffbZdhfih f_lbeh\hfm djZkghfm^_dZglZpb_c±jZaZi_j_ghkylhkZ^hdgZnbevljb\gh\vijhfu\Zxll_f`_jZkl\hjhf ^h hljbpZl_evghc j_Zdpbb gZ oehjb^bhgu ih jZkl\hjm AgNO3, ih^dbke_gghfm FHNO3) \ nbevljZl_.
<hjhgdm k nbevljhf ihf_sZxl \ kmrbevguc rdZn b ke_]dZ ih^kmrb\Zxl hkZ^hd AZl_f nbevlj k hkZ^dhf ihf_sZxl \ ^h\_^zgguc ^h ihklhygghc fZkku ijbl_fi_jZlmj_hdheh 0Klb]_evhklhjh`ghgZ]hj_ed_h[m]eb\Zxlnbevljihke_q_]hihf_sZxllb]_ev\fmn_evgmxi_qvbijhdZeb\Zxlqijbl_fi_jZlmj_hdheh 0KIjhdZeb\Zgb_hkZ^dZih\lhjyxl^h^hklb`_gbyihklhygghcfZkku<a\_rb\Zgb_lb]eyFZkkZimklh]hFZkkZlb]eyklb]ey]\_s_kl\hf]112,370412,5429212,370012,5421312,369912,5421FZkkZimklh]hlb]ey699]FZkkZlb]eyk\_s_kl\hf2]FZkkZAl2O3: 0,1723]JZkqzlkh^_j`Zgby:mAl = F ⋅ mAl2O3 = 0,5292 ⋅ 0,1723 = 0, 0912 ]ω Al =0, 0912100% ≈ 57, 07%.0,1598164.2.
Dhfie_dkhghf_ljbq_kdh_hij_^_e_gb_ZexfbgbyKo_fZZgZebaZJZkqzlb\a\_rb\Zgb_gZ\_kdbIjb[ebabl_evghkh^_j`Zgb_ZexfbgbyZexfbgby\kieZ\_±JZkl\hjm^h[ghkh[jZlv\f_jgmxdhe[mgZfedhgp_gljZpbybhgh\Zexfbgbyg_h[oh^bfZy^eydhfie_dkhghf_ljbq_kdh]hlbljh\Zgbyk FIhwlhfmfZkkZgZ\_kdbg=0, 04 ⋅ 0, 2 ⋅ 26,98154cVM Al100 =100 ≈ 0,3925 ]55P<a\_rb\Zgb_gZ\_kdbFZkkZ[xdkZkFZkkZimklh]hh[jZaphf][xdkZ]123,846423,3569223,846523,3568323,846423,3569FZkkZ[xdkZkh[jZaphf]FZkkZimklh]h[xdkZ]FZkkZgZ\_kdb]4F_lh^bdZjZkl\hj_gbyLhqgh\a\_r_ggmxgZ\_kdmkieZ\Zi_j_ghkyl\obfbq_kdbcklZdZggZfeb^h[Z\eyxlfeghcszehqb. Hklhjh`ghgZ]j_\Zxlijbihklhygghfi_j_f_rb\Zgbb^hij_djZs_gby\u^_e_gby]ZaZIhemq_ggucjZkl\hjjZa[Z\eyxl\h^hc^h fe hlnbevljh\u-17\ZxlgZnbevlj_©[_eZye_glZªNbevljZlkh[bjZxl\f_jgmxdhe[mgZfeb^h\h^yl^hf_ldbijbeb\ZyHCl (1:1).F_lh^bdZboh^hij_^_e_gbyF_lh^bdZ Zebd\hlmfeihemq_ggh]hjZkl\hjZi_j_ghkyl\dhgbq_kdmxdhe[m^eylbljh\ZgbygZfe^h[Z\eyxlfeklZg^Zjlgh]hjZkl\hjZW>L:k ~ 0,05 FZp_lZlguc[mn_j^hpH bgZ]j_\Zxl\l_q_gb_fbgg_^h\h^y^hdbi_gbyD]hjyq_fmjZkl\hjm^h[Z\eyxlg_kdhevdhdZi_ev]hwlZghevgh]hjZkl\hjZI:GblbljmxlklZg^ZjlgufjZkl\hjhfCuSO4 ^hi_j_oh^ZhdjZkdbba`zelhc\qbklhnbhe_lh\mxJ_amevlZlulbljh\ZgbyV (CuSO4), fe112,87212,98312,92412,90Kj_^gbch[tzfjZkl\hjZCuSO4, ihr_^rbcgZlbljh\Zgb_V = feJZkqzlkh^_j`ZgbykKuSO4) = F kW>L: F ihwlhfm h[tzf W>L: hllbljh\Zgguc jZkl\hjhf CuSO4 khklZ\ey_l V1 =c(CuSO 4 ) ⋅V (CuSO 4 ) 0, 02 ⋅12,91=≈ 5, 23 fe H[tzf W>L:c(W>L: ihr_^rbcgZlbljh\Zgb_Al3+ khklZ\ey_l V2 = V0 − V1 = 15, 00 − 5, 23 = 9, 77 fe LZdbfh[jZahfdhgp_gljZpbyZexfbgby\jZkl\hj_khklZ\beZ cAl =V2 ⋅ c (W>L: 9, 77 ⋅ 0, 04937=≈ 0, 0483 M.V (Al3+ )10, 00 fe ijb]hlh\e_ggh]h jZkl\hjZ kh^_j`Zeb mAl = cAl ⋅ V ⋅ M Al = 0, 0483 ⋅ 0, 2 ⋅ 26,98154 ≈≈ 0, 2608 ] ω Al =0, 2608100 ≈ 53, 27%.0, 489618AZdexq_gb_<oh^_jZ[hluijh\_^zgdZq_kl\_ggucZgZebah[jZapZZlZd`_dhebq_kl\_ggh_hij_^_e_gb_ kh^_j`Zgby h^gh]h ba hkgh\guo dhfihg_glh\ IhdZaZgh qlh ZgZebabjm_fuc h[t_dly\ey_lky kieZ\hf Zexfbgby b f_^b k g_[hevrbfb ijbf_kyfb `_e_aZ b heh\Z Kh^_j`Zgb_Zexfbgby\kieZ\_khklZ\ey_l–ihj_amevlZlZf]jZ\bf_ljbq_kdh]hZgZebaZ–ihj_amevlZlZflbljbf_ljbq_kdh]hZgZebaZ19Kibkhdebl_jZlmju1.
Hkgh\uZgZeblbq_kdhcobfbbIjZdlbq_kdh_jmdh\h^kl\h/Ih^j_^X:Ahehlh\ZF<ukrZyrdheZk2. ;hdJF_lh^ujZaeh`_gby\ZgZeblbq_kdhcobfbbFObfbyk3. Lbohgh\<G:gZeblbq_kdZyobfbyZexfbgbyFGZmdZk4. >ufh\:FL_ogbq_kdbcZgZebajm^bf_lZeeh\FF_llZemj]ba^Zlk5. =bee_j[jZg^<NE_g^_ev=W;jZcl=:=hnfZg>BIjZdlbq_kdh_jmdh\h^kl\hihg_hj]Zgbq_kdhfmZgZebamF=hkobfba^Zlk6. Pbg[_j]KEAZ\h^kdZyeZ[hjZlhjbyLK±7. RZjeh = F_lh^u ZgZeblbq_kdhc obfbb Dhebq_kl\_gguc ZgZeba g_hj]Zgbq_kdbokh_^bg_gbcQFObfbyk20.