Главная » Просмотр файлов » 14_magnets_2018_may22

14_magnets_2018_may22 (1182309), страница 7

Файл №1182309 14_magnets_2018_may22 (Лекции 2018) 7 страница14_magnets_2018_may22 (1182309) страница 72020-08-18СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 7)

Слева: распределениеориентаций спинов на решётке. Справа: иллюстрация получения эквивалентных по энергииориентаций спинов при одновременном повороте всех спинов на один угол. В центре кругауказан угол поворота.Парой к такой вихревой конфигурации будет конфигурация антивихря, в которой при обходепо аналогичному контуру спиновые вектора будут поворачиваться против часовой стрелки.При этом набег угла поворота при обходе по замкнутому контуру составит −2 π .Построение такой конфигурации показано на рисунке 19.

Для антивихря огибающие поляспиновых векторов имеют форму семейства гипербол, поворот спиновых векторовэквивалентен повороту осей этих гипербол. Никакой поворот спиновых векторов не можетпревратить вихрь в антивихрь, хотя энергии этих конфигураций одинаковы. Конфигурациистр. 31 из 3322.05.2018типа вихря и антивихря оказываются топологически не эквивалентными, их взаимномупревращению мешает «закон сохранения топологического заряда».Рисунок 19 Построение конфигурации типа антивихря для XY-ферромагнетика. Слева: одиниз вариантов конфигурации и схема семейства огибающих.

Справа: изменение конфигурациипри одновременном повороте спиновых векторов.Конфигурация вихря или антивихря является топологическим дефектом XY-модели: от нееневозможно избавится путём малых деформаций структуры. Отметим, что это свойствосущественно связано с двумерностью спинового пространства, так как для гейзенберговскогомагнетика (когда у спинового вектора есть все три компоненты) можно непрерывно перейти вколлинеарное ферромагнитное состояние, поворачивая все спины в направлении,перпендикулярном плоскости рисунка.Для определённости будем рассматривать конфигурацию типа вихря. При обходе вокругцентра этого вихря фаза ϕ i меняется на 2 π . Если выбрать траекторию обхода набольшом расстоянии r от центра, то в полосе шириной в межатомное расстояние aбудет 2 π r a /a 2=2 π r /a спинов.

Соответственно, разница фазы между соседними в этом«кольце» спинами a /r . Вдоль радиусов фаза не меняется, поэтому для энергии такогосостояния получаем:()JaE≈E 0− ∑2 i ri2()JaN r ≈E 0− ∫2ri2()d 2rdrR=E 0−π J ∫ =E 0−π J ln2rr0a,2πr–aчисло узлов в кольце шириной a , R - размер системы и r 0 - некоторый радиусобрезания (порядка межатомного), введение которого необходимо из-за неприменимостиинтегрального подхода при малых расстояниях от центра вихря.

Существование такого вихряневыгодно энергетически (напомним, что J < 0 ).здесь суммирование идёт по всем радиусамriтаких колец ширинойa ,Nr =iС точностью до краевых эффектов, центр вихря может находиться в любом узле решётки.Соответственно,связаннаяспоявлениемодиночноговихряэнтропиястр. 32 из 3322.05.2018( ) ( )2RRS =ln N =ln=2 lnr0 'r0 ', здесь r 0 ' также расстояние порядка межатомного.Вихрь может возникнуть при заданной температуре, если его появление приведёт кпонижению свободной энергии:F =E−TS =F 0−π J ln()( )RR−2T lnr0r 0'.Пренебрегая для оценки разницей междуr0 иr 0 ' получаем, что прирождение свободных вихрей выгодно, в то время как приT< −T> −πJ2πJрождение свободных2вихрей не выгодно.Этот необычный фазовый переход между состоянием со свободными вихрями выше T c , исостоянием, в котором (с точностью до тепловых флуктуаций) свободных вихрей нет нижеT c называют переходом Березинского-Костерлица-Таулеса.14 Поправки к этому решению,учитывающие взаимодействие вихрей [18], приводят к небольшому изменению критическойπ∣J ∣≈1.12 .температуры:2Tc14 Костерлиц (J.

Michael Kosterlitz) и Таулес (David J. Thouless) — лауреаты Нобелевской премии по физике2016 года (совместно с Д.Халдейном) «за теоретические открытия топологических фазовых переходов итопологических фаз вещества».стр. 33 из 3322.05.2018.

Характеристики

Тип файла
PDF-файл
Размер
2,24 Mb
Материал
Тип материала
Предмет
Высшее учебное заведение

Список файлов лекций

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6510
Авторов
на СтудИзбе
302
Средний доход
с одного платного файла
Обучение Подробнее