Главная » Просмотр файлов » 08_superfluid_2018_mar25

08_superfluid_2018_mar25 (1182299), страница 2

Файл №1182299 08_superfluid_2018_mar25 (Лекции 2018) 2 страница08_superfluid_2018_mar25 (1182299) страница 22020-08-18СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Верхняя панель: линейная шкала температур вразных масштабах. Нижняя левая панель: данные вблизи лямбда-точки на логарифмическойшкале температур. Нижняя правая панель: зависимость теплоёмкости гелия-4 оттемпературы ниже 1К, открытые символы соответствуют данным, полученным придавлении насыщенных паров (молярный объём 27.58 см 3 / моль ), закрашенные символы —давлению 22 атмосферы (молярный объём 23.55 см 3 / моль ). Из книги [6].Этот фазовый переход виден невооружённым глазом: при пересечении температуры переходакипение жидкого гелия в объёме прекращается (рисунок 2, видеодемонстрация [3]).

Этоозначает, что ниже лямбда-точки возникает некоторый дополнительный механизм переносатепла в жидком гелии, который превосходит по эффективности нормальный для всехжидкостей процесс образования пузырьков пара на каких то центрах. Действительно,измеряемая экспериментально теплопроводность гелия ниже лямбда-точки оказываетсяочень большой и определяется размерами экспериментальной установки (рисунок 4).Эмпирически зависимость теплопроводности гелия-4 в капилляре диаметром d притемпературе ниже 0.4К и при давлении ниже 2 атмосфер описывается закономстр. 7 из 3025.03.2018Отметим,чтотакаязависимостьаналогичнаκ≈20 d T 3 ( Вт /(см⋅К )) [6].низкотемпературной теплопроводности твёрдого тела высокой чистоты, определяемойрассеянием фононов на границах образца.

Совпадение степени (куб) в зависимости оттемпературы низкотемпературных теплоёмкости и теплопроводности указывает 4 именно нанезависящий от температуры механизм рассеяния некоторых «переносчиков тепла» награницах образца.Рисунок 4 Теплопроводность жидкого гелия-4 выше лямбда-точки (справа) и присверхнизких температурах (слева). На левой панели данные с индексом #1 измерены в трубкедиаметром 1.38 мм, данные с индексом #4 в трубке диаметром 7.97 мм, закрытые символы(верхние в каждой серии) получены при давлении 2 атмосферы, открытые — при давлении20 атмосфер. Из книги [6]. Обратите внимание, что теплопроводности левом рисунке притемпературе около 700 мК на 2-3 порядка превышают теплопроводность жидкого гелия-4выше лямбда-точки.Другим экспериментальным фактом является обнаруженное П.Л.Капицей исчезновениевязкости у гелия ниже лямбда-точки. Гелий-II может протекать сквозь тонкие капилляры, приэтом скорость его течения не подчиняется закону Пуазейля — в то время как гелий-I, вышелямбда-точки ведёт себя совершенно нормальным образом.Одной из наиболее красивых демонстраций этого эффекта является измерение увлекаемоймассы в колебаниях крутильного маятника, погруженного в жидкость (период колебанийкрутильного маятника в жидкости определяется жёсткостью подвеса и массой маятника сучётом массы увлекаемой жидкости).

Эти опыты были поставлены Э.Л.Андроникашвили в40-х годах [8][9], их часто называют опытами с маятником Андроникашвили. Для развитияповерхности маятник делался в виде стопки тонких дисков (от 50 до 100 дисков в стопке) изалюминиевой фольги толщиной 13 мкм, разделённых шайбами толщиной 0.21мм, схема4 Вспоминаем газовую модель теплопроводности, которую мы применяли для описания теплопроводноститвёрдых диэлектриков.стр. 8 из 3025.03.2018маятника показана на рисунке 5.Рисунок 5: Схема крутильного маятника Андроникашвили.

Слева: два соседних диска.Справа: сборка стопки дисков. Из статьи [8].Рисунок 6 Слева: зависимость относительного изменения периода крутильных колебанийΔ Θ/Θ маятника Андроникашвили от температуры. Из статьи [8]. В центре:определённое по изменению периода колебаний изменение эффективной плотностиувлекаемой «нормальной» жидкости. Из статьи [8]. Справа: зависимость плотности«нормальной» компоненты от температуры до более низких температур, полученная в ходедальнейших исследований. Из статьи [9].При таких малых зазорах при медленных колебаниях вязкая жидкость полностьювовлекается в колебания маятника и момент инерции маятника, определяющий периодкрутильных колебаний, определяется в том числе и массой жидкости между дисками.Эксперимент показал, что ниже лямбда-точки период колебаний начинает уменьшаться, чтосоответствует тому, что увлекаемая масса уменьшается5.

Интерпретируя это уменьшение, какα̈+5 Уравнение крутильных колебанийинерции. Частота колебанийинерции.ω=√Kα=0 , гдеJK— жёсткость нити, аJ— моментK , поэтому увеличение частоты соответствует уменьшению моментаJстр. 9 из 3025.03.2018изменение эффективной плотности жидкости, участвующей в «нормальном» вязкомдвижении, можно из изменения периода вычислить зависимость плотности «нормальной»компоненты гелия-II ρn . Эксперимент показывает, что эта эффективная плотностьстремится к нулю при стремлении температуры к абсолютному нулю — при T =0жидкость совсем не увлекалась бы вращением маятника (рисунок 6).Рисунок 7 Фонтан-эффект (термомеханический эффект) в жидком гелии.

Верхняя панель:подъём уровне гелия в трубке, закрытой снизу порошковой «пробкой» (тёмная расширеннаячасть трубки) при нагреве верхней части «пробки» сфокусированным излучением.Заполненная порошком часть трубки соединяется с жидким гелием в дьюаре черезотверстие снизу. Повышение уровня жидкости в трубке над уровнем жидкости в дьюаревозникает только при нагреве. Нижняя панель: фонтан гелия, бьющий из капилляра привключении нагревателя. Кадры из демонстрационного фильма [3].Ещё одним необычным, обнаруженным экспериментально, свойством являетсятермомеханический эффект или фонтан-эффект.

Его наблюдение заключается в том, что еслипогрузить в гелий-II трубку, нижний конец которой наполнен мелкодисперсным порошком,практически запрещающим вязкое течение через этот порошок, и нагревать гелий в трубкевыше этой «пробки», то уровень жидкости в трубке повышается. Если же верхний конецтрубки сузить в капилляр, то из капилляра бьёт фонтан, причём фонтанированиестр. 10 из 3025.03.2018продолжается всё время, пока подводится мощность нагрева (рисунок 7).Спектр возбуждений в гелии-II.При абсолютном нуле все системы должны оказаться в своём основномквантовомеханическом состоянии. Тогда свойства систем вблизи абсолютного нуляестественно описывать на языке небольших отклонений (относительно «истинного»основного состояния) распределения частиц по состояниям.

Это естественным образомприводит к описанию свойств системы многих частиц на языке небольшого количестваквазичастиц. Квантовая жидкость гелий-4 является естественным тестовым примером дляэтой концепции квазичастиц — элементарных возбуждений квантовой жидкости.Естественно возникает необходимость узнать спектр (зависимость энергии от импульса) дляэтих квазичастиц. Эта задача успешно решена методом неупругого рассеяния нейтронов 6(методика неупругого рассеяния нейтронов описана в [10]), данные из одной из ранних работ[11] приведены на рисунке 8.Рисунок 8: Спектр элементарных возбуждений в гелии-4 ниже лямбда-точки, определённыйпо неупругому рассеянию нейтронов.

Температура 1.12 К, давление равно давлениюнасыщенных паров. Из статьи [11].Действительно, оказалось что неупругое рассеяние нейтронов происходит только при вполнеопределённых соотношениях переданных среде импульса и энергии. Ширина пиканеупругого рассеяния при низких температурах является аппаратной шириной спектрометра— то есть с точки зрения эксперимента возбуждения а жидком гелии-4 при низких6 При неупругом рассеянии нейтронов на исследуемый образец посылают поток медленных (обычно сэнергией около 10-20 меВ) нейтронов с известной энергией E0 и направлением импульса ⃗p0 ианализируют энергию E1 и импульс ⃗p1 рассеянных нейтронов.

Изменение энергии ε=E0−E 1 иq=⃗p0−⃗p1 связано с рождением (или поглощением) в образце некоторых возбуждений. Еслиимпульса ℏ ⃗ε(⃗q ) однозначная функция, то такое рассеяние является детерменированной двухчастичной задачей иε(⃗q ) есть спектр квазичастиц, описывающих данный тип возбуждений.стр. 11 из 3025.03.2018температурах (существенно ниже лямбда-точки) являются долгоживущими квазичастицами.Определённый экспериментально спектр этих квазичастиц существенно отличается отквадратичного спектра свободного атома гелия, также показанного на рисунке 8. На малыхволновых векторах (меньше примерно 0.5 1/Å) спектр линеен. Это соответствует тому, чтосамые низкоэнергетичные возбуждения жидкости являются обычными звуковыми волнами,проквантовав которые можно перейти к представлению этих возбуждений в видеквазичастиц-фононов, аналогичных акустическим фононам в твёрдых телах (но имеющихтолько одну поляризацию — продольную, так как в жидкости поперечных колебаний быть неможет).

Это свойство спектра сразу объясняет экспериментально наблюдаемую кубическуюзависимость низкотемпературной теплоёмкости и теплопроводности.Однако кроме линейного (называемого фононным) участка спектра в спектре квазичастицимеется минимум на волновом векторе около 2 1/Å с энергией в минимуме около 8К. Этотминимум называют ротонным минимумом7. Эта форма спектра связана с особенностямивзаимодействия атомов гелия и простой интерпретации не имеет, мы будем приниматьсуществование такого спектра возбуждений как данность.

Так как в любом экстремумеспектраE ( ⃗k ) плотность состояний всегда имеет максимум 8, то квазичастицы сволновыми векторами вблизи ротонного минимума будут вносить большой вклад вразличные термодинамические свойства гелия. Между фононной частью спектра и ротоннымминимумом есть максимум с энергией около 14К. Максимуму также соответствуетэкстремум в плотности состояний, но при низких температурах заселённость состоянийвблизи максимума окажется пренебрежимо мала9.Быстрое уменьшение чисел заполнения с ростом энергии позволяет при описаниинизкотемпературных свойств упростить модель спектра квазичастиц, формально считая, чтоесть два независимых вида квазичастиц: фононы с линейным спектром E=ℏ s k и ротоны22 ( k −k 0 )со спектром E=Δ+ℏ, где скорость звука s=237 м /сек , ротонная щель2mΔ=8.6 К , положение ротонного минимума k 0=1.91 Å−1 и эффективная масса ротонаm=0.16 mHe (численные данные по работе [11]).При температурах ниже 1.7-1.8К газы фононов и ротонов можно считать идеальными и невзаимодействующими друг с другом.

Характеристики

Тип файла
PDF-файл
Размер
2,14 Mb
Материал
Тип материала
Предмет
Высшее учебное заведение

Список файлов лекций

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6352
Авторов
на СтудИзбе
311
Средний доход
с одного платного файла
Обучение Подробнее