Главная » Просмотр файлов » Глава 02. Излучение абсолютно черного тела

Глава 02. Излучение абсолютно черного тела (1121322)

Файл №1121322 Глава 02. Излучение абсолютно черного тела (Электронные лекции)Глава 02. Излучение абсолютно черного тела (1121322)2019-05-09СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

Глава 2. Излучение абсолютно черного тела

В физике часто рассматривается модель, в которой тело находится в термодинамическом равновесии с собственным излучением. В этом случае принято говорить о «чёрном теле» и о «чернотельном излучении». Поле излучения внутри чёрного тела однозначно определяется его температурой. Исследование спектра чёрного тела явилось началом теории атома. Хотя излучение чёрного тела в области малых частот может быть объяснено в рамках классической физики, его полный анализ можно провести только в рамках квантовой теории. Это следует хотя бы из того, что в аналитические формулы, описывающие спектр чёрного тела, входит введённая Планком постоянная ħ. Строго говоря, в природе абсолютно чёрное тело в чистом виде не существует, но его моделью может служить замкнутая полость с малым отверстием (рис.2.1).

Спектральную плотность излучения чёрного тела будем обозначать Uω. Её размерность — эрг/(см3·рад/с). Из соотношения

(1) ω = 2π 

между круговой ω и линейной  частотой следует, что Uω в 2π раз меньше плотности энергии U, рассчитанной на один герц:

U = 2π Uω.

В теоретических построениях часто пользуются величиной Uω, а в практических расчётах предпочитают U. Важную роль в приложениях играет интенсивность излучения, которую для случая чёрного тела принято обозначать Bω и B.

Результаты наблюдений часто рассчитываются на единицу длины волны , а не частоты. Соответствующая интенсивность обозначается B, а плотность энергии — U. Количество энергии в определённом спектральном интервале, конечно, не зависит от выбора шкалы, поэтому Uω, U и U связаны друг с другом соотношением

.

Диапазоны длин волн  и частот ω и  определяются функциональной зависимостью

(3)  = с/ ,  = 2π ω,

из которой следует

.

Следует обратить внимание на то, что спектральные интервалы равны модулям дифференциалов соответствующих переменных. Например, из (2.3) следует отрицательное значение производной d/d, в то время как  и ω существенно положительные величины.

Поле излучения внутри чёрного тела изотропно, поэтому его поток равен нулю. Тем не менее, существует специальная модель, в которой рассматривается не внутренняя область, а граница изотропного источника. Излучение границы анизотропно и, следовательно, поток от неё отличен от нуля. В рамках такой модели справедлив известный закон Стефана–Больцмана для полного, проинтегрированного по всему спектру потока излучения от чёрного тела: поток пропорционален четвёртой степени температуры.

2.1. Особенности спектра излучения

В этом разделе мы изложим основные результаты экспериментов, на которых основана теория излучения чёрного тела.

Формула Рэлея-Джинса

В диапазоне предельно малых частот,

,

именуемом областью Рэлея–Джинса, плотность энергии пропорциональна температуре T и квадрату частоты ω:

На рис.2.1.1 эта область помечена РД. Формула Рэлея-Джинса может быть выведена чисто

классическим путём, без привлечения квантовых представлений. Чем выше температура чёрного тела, тем шире диапазон частот, в котором справедлива эта формула. Она объясняется в классической теории, но её нельзя распространять на высокие частоты (пунктирная линия на рис.2.1.1), так как просуммированная по спектру плотность энергии в этом случае бесконечно велика:

Эту особенность закона Рэлея-Джинса называют «ультрафиолетовой катастрофой».

Формула Вина.

В диапазоне больших частот (область В на рис.2.1.1) справедлива формула Вина:

Хорошо видно, что правая часть меняется немонотонно. Если частота не слишком велика, то преобладает множитель ω3 и функция Uω возрастает. По мере увеличения частоты рост Uω замедляется, она проходит через максимум, а затем убывает за счёт экспоненциального множителя. Наличие максимума в спектре излучения отличает виновский диапазон от области Рэлея-Джинса.

Чем больше температура тела, тем выше граничная частота, начиная с которой выполняется формула Вина. Величина параметра a в экспоненте правой части зависит от выбора единиц, в которых измеряются температура и частота. Вывод формулы Вина требует привлечения квантовых представлений о природе света.

Закон смещения Вина

Обозначим ωmax частоту максимума функции Планка. Закон смещения Вина гласит, что она пропорциональна температуре, следовательно:

Константа в правой части зависит от выбора единиц частоты и температуры. Кроме того, она различна для функций B и B.

Закон Стефана-Больцмана.

Закон Стефана-Больцмана заключается в том, что плотность энергии чёрнотельного излучения, проинтегрированная по всем частотам, пропорциональна четвёртой степени температуры:

Он часто используется в астрономии при определении светимости звезды по её температуре. Для этого необходимо перейти от плотности излучения к наблюдаемой величине — потоку. Формула для интегрального по спектру потока излучения будет выведена в третьей главе.

2.2. Число осцилляторов в единице объёма

Попытаемся объяснить все приведённые выше экспериментальные факты. Для этого введём представление об осцилляторах, или о стоячих волнах внутри некоторой полости (например, как на рис.2.1). Количество энергии излучения Uω dω определяется числом осцилляторов dNω в интервале частот (ω, ω + dω), в объеме V, при средней энергии одного осциллятора < E >:

Перейдём к вычислению dNω и < E >.

Число осцилляторов

Подсчёт числа осцилляторов мы выполним по методу, предложенному Рэлеем и реализованному Джинсом. Число осцилляторов dNω равно количеству стоячих волн в рассматриваемом объеме. Подсчёт числа колебаний можно выполнить и в терминах длин волн

для интервала от  до  + d, но удобнее проводить его в шкале волновых чисел

для интервала от k до k + dk. Рассмотрим волны в кубе LLL. Введём волновой вектор k проекции которого на оси координат равны kx, ky, kz. Внутри рассматриваемого объёма по каждому направлению должно укладываться целое число волн:


где Nx, Ny и Nz — целые положительные числа. Совокупность таких значений kx, ky, kz обеспечивает наличие узлов на гранях куба. Модуль k волнового вектора выражается через его проекции, как модуль любого вектора:

Для нахождения числа осцилляторов удобно воспользоваться простым геометрическим приёмом. Выберем Nx, Ny и Nz из формулы (2.4) за координатные оси в воображаемом пространстве чисел. На рис. 2.1 изображена часть этого пространства. Каждой тройке чисел Nx, Ny и Nz на этом рисунке отвечает точка. Введём величину

Если числа Nx, Ny и Nz достаточно велики, то их функция N будет меняться почти непрерывно и на рис.(2.1) изобразится радиус-вектором. Согласно (2.4–6), модуль волнового вектора однозначно выражается через N:

Отсюда следует, что число волн с модулем волнового вектора, лежащим в интервале от k до k + dk, равно числу чисел N в интервале от N до N + dN. Последнее равно числу точек, попадающих в шаровой слой между сферами радиусом N и N + dN, а именно,

Таким образом, число волн, или число осцилляторов с величиной волнового числа между k и k + dk и с определённым направлением поляризации в объёме V = L3 равно

Последнее равенство справа получилось после дифференцирования (2.7). Нам осталось умножить полученное выражение на 2 — число независимых направлений поляризации излучения, и, воспользовавшись формулой (2.3), перейти к шкале частот:

В силу большой важности (2.8), приведём другой его вывод, основанный на формуле (2.3) первой главы

для числа квантовых состояний dN в элементе фазового объёма d. Проинтегрировав последнюю формулу по всем пространственным координатам, получим, что число квантов в объёме V и в элементе dpx dpy dpz пространства импульсов равно V dpx dpy dpz /h3. Теперь перейдём к сферическим координатам в пространстве импульсов

dpxdpydpz = p2 dp sin dd

и проинтегрируем по угловым переменным:

Итак, в пространстве импульсов объём шарового слоя радиусом p и толщиной dp равен 4πp2 dp. С помощью формулы pω/c перейдём от интервала импульсов фотона к диапазону частот излучения:

откуда следует выражение для числа квантов в объёме V и в интервале частот dω с заданным направлением поляризации:

Если теперь учесть наличие у фотона двух независимых поляризаций, то снова получится формула (2.8). Примечательно, что она не содержит постоянной Планка. Это обстоятельство служит указанием на то, что она может быть получена в рамках классического рассмотрения.

Теперь вычислим среднюю энергию осциллятора. Рассмотрим последовательно случаи классического и квантового осцилляторов

2.3 Средняя энергия классического осциллятора

Энергия одномерного осциллятора выражается через импульс p и координату q:

В классической статистике равновесное распределение частиц (в данном случае осцилляторов) по энергиям определяется формулой

Поэтому средняя энергия равна

Введем обозначения

тогда

В последнем интеграле переменные P и Q разделяются. После сокращения общих множителей в числителе и знаменателе приходим к формуле

Интегралы в числителе и знаменателе обоих слагаемых могут быть приведены к виду

Характеристики

Тип файла
Документ
Размер
258 Kb
Тип материала
Высшее учебное заведение

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов лекций

Электронные лекции
Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6353
Авторов
на СтудИзбе
311
Средний доход
с одного платного файла
Обучение Подробнее