l7 (1111270)

Файл №1111270 l7 (Лекции doc и pdf)l7 (1111270)2019-05-06СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

Лекция 7

Формула Гаусса-Остроградского

Формула Гаусса-Остроградского является одной из наиболее важных формул в векторном анализе. Она связывает поток векторного поля через замкнутую поверхность с напряженностью векторного поля внутри замкнутой поверхности. Для векотрного поля :

,

причем поверхностный интеграл потока векторного поля берется по поверхности через внешнюю сторону (вектор нормали к поверхности направлен «наружу»). Правую часть формулы можно переписать в виде:

, где – дивергенция векторного поля , – оператор Гамильтона (набла).

Формула Гаусса-Остроградского справедлива, если выполняются два условия. Во-первых, поверхность S должна быть кусочно-гладкой, т.е. такой, что в любой ее точке можно провести касательную плоскость (поверхность задается дифференцируемыми функциями) и двусторонней (направление нормали при движении вдоль поверхности сохраняется. Во-вторых, векторное поле должно быть таким, что функции и их частные производные по x, y и z непрерывны в области V.

Другие варианты формулы Гаусса-Остроградского.

З

апишем выражение для вектора нормали: , где – углы,

x

y

z

α

β

γ


которые вектор нормали составляет с осями координат. .
Отсюда

Кроме того, имеет место следующая формула:

Доказательство формулы (1 вариант):

Представим векторное поле в виде суммы векторных полей: , где , найдем потоки этих векторных полей по отдельности, а затем сложим их.

Рассмотрим сначала случай поля . Замкнутая поверхность является цилиндроидом, ограниченным сверху и снизу поверхностями, заданными в явном виде: (снизу) и

y

x

z

D

S2

S1

z=z1(x,y)

S3

z=z2(x,y)

(сверху). Поверхность S состоит из нижней S1, боковой S2 и верхней S3 поверхностей. Рассмотрим поверхностный интеграл по S1. D – проекция S1 на плоскость xy.

Координаты вектора нормали: .

Так как вектор нормали направлен вниз (координата по z отрицательна), то в формуле для нужно выбрать знак «+». .

Д

D

ифференциал поверхности равен: Отсюда Интеграл по боковой поверхности S2. Вектор нормали , так как нормаль параллельна плоскости xy. . Какая бы ни была боковая поверхность, интеграл по ней равен нулю:

И нтеграл по поверхности S3Рассматривается аналогично интегралу по поверхности S1 с той разницей, что вектор нормали направлен в противоположную сторону – вверх: . Скалярное произведение на вектор нормали: , дифференциал поверхности:

Сложим интегралы по поверхностям S1, S2 и S3:

Рассмотрим тройной интеграл по объему V:

Таким образом, для векторного поля формула Гаусса-Остроградского доказана.

Аналогично доказывается формула, если взять поле , и в качестве замкнутой поверхности взять цилиндроид, ось которого направлена вдоль оси y.

(доказывается аналогично)

Аналогично и для поля :

Если взять поле , то – формула Гаусса-Остроградского в общем виде верна.

П ри доказательстве мы использовали замкнутую поверхность, которая может быть представлена как цилиндроид с осью, направленной вдоль осей x, y или z. Такой поверхностью является прямоугольный параллелепипед. Если рассмотреть произвольную поверхность, то справедливость формулы не очевидна.

Разобьем произвольную поверхность на две – S1 и S2.

Проинтегрируем векторное поле по каждой поверхности и сложим. Получатся интегралы по S1, S2 и два интеграла по сечению. Интегралы по сечению отличаются только знаком (так как векторы нормалей направлены в разные стороны), они уничтожаются при сложении. Поэтому поверхность можно разбивать на части, интегрировать по ним, результаты складывать.

П роизведем сечение замкнутой поверхности большим числом перпендикулярных плоскостей. Формула Гаусса-Остроградского будет верна всюду, кроме границ поверхности, на границах становится справедливой при устремлении диаметра разбиения к нулю. Отсюда следует, что формула Гаусса-Остроградского справедлива для любой кусочно-гладкой поверхности.

Пример.

В качестве поля возьмем радиус-вектор: , Sсфера радиуса R с центром в начале координат.

Для нахождения потока вектора воспользуемся формулой Гаусса-Остроградского:

Формула Ньютона-Лейбница представляет интеграл по отрезку по значениям первообразной на границах отрезка. Формула Гаусса-Остроградского представляет собой, по существу, то же самое (вместо отрезка – объем, вместо границ отрезка – замкнутая поверхность). Эту формулу, как и формулу Грина, можно считать обобщением формулы Ньютона-Лейбница.

Характеристики

Тип файла
Документ
Размер
149,5 Kb
Материал
Тип материала
Высшее учебное заведение

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов лекций

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6390
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее