rpd000009138 (1008596), страница 4
Текст из файла (страница 4)
Обратный ход:
т.е. с точностью до ошибок округления получена единичная матрица.
Пример 3. Методом прогонки решить СЛАУ
Р е ш е н и е.
Practice4.doc
Практическое занятие 4. Нахождение собственных значений и собственных векторов матриц (2 ч, СРС – 1 ч, тема 1, лекция 4).
Пример 1. С точностью вычислить собственные значения и собственные векторы матрицы
Р е ш е н и е.
1). Выбираем максимальный по модулю внедиагональный элемент матрицы , т.е. находим
, такой что
=
. Им является элемент
.
2). Находим соответствующую этому элементу матрицу вращения:
В полученной матрице с точностью до ошибок округления элемент .
, следовательно итерационный процесс необходимо продолжить.
Переходим к следующей итерации :
Переходим к следующей итерации
Таким образом в качестве искомых собственных значений могут быть приняты диагональные элементы матрицы :
Собственные векторы определяются из произведения
Полученные собственные векторы ортогональны в пределах заданной точности, т.е.
Пример 2.
Вычислить спектральный радиус матрицы
с точностью
.
В качестве начального приближения собственного вектора возьмем .
Реализуем итерационный процесс (1.26, лекции), полагая .
Таким образом, полученное на 4-ой итерации значение =6,9559 удовлетворяет заданной точности и может быть взято в качестве приближенного значения
. Искомое значение спектрального радиуса
= 6,9559.
Practice6.doc
Практическое занятие 6. Решение систем нелинейных уравнений (2 ч, СРС – 1 ч, тема 2, лекция 6).
Пример 1. Методом Ньютона найти положительное решение системы нелинейных уравнений
Решение. Для выбора начального приближения применяем графический способ. Построив на плоскости в интересующей нас области кривые
и
, определяем, что положительное решение системы уравнений находится в квадрате
.
За начальное приближение примем .
Для системы двух уравнений расчетные формулы удобно записать в виде разрешенном относительно ,
В рассматриваемом примере:
Подставляя в правые части соотношений выбранные значения , получим приближение
, используемое, в свою очередь, для нахождения
. Итерации продолжаются до выполнения условия
, где
Результаты вычислений содержатся в таблице.
Пример 2. Найти положительное решение системы из примера 1 методом простой итерации с точностью .
Решение. Преобразуем исходную систему уравнений к виду
Проверим выполнение условия , в области
:
,
. Для этого найдем
Следовательно, если последовательные приближения не покинут области
(что легко обнаружить в процессе вычислений), то итерационный процесс будет сходящимся.
В качестве начального приближения примем . Последующие приближения определяем как
Вычисления завершаются при выполнении условия
Результаты вычислений содержатся в таблице.
Practice5.doc
Практическое занятие 5. Решение нелинейных уравнений (2 ч, СРС – 1 ч, тема 2, лекция 5).
Пример 1.
Решить уравнение
Решение.
Для локализации корней применим графический способ. Преобразуем исходное уравнение к следующему эквивалентному виду:
Построив графики функций и
, определяем, что у решаемого уравнения имеется только один корень, который находится в интервале
.
Метод половинного деления. В качестве исходного отрезка выберем [0.4, 0.6]. Результаты дальнейших вычислений, согласно приведенному выше алгоритму содержатся в таблице.
0 1 2 3 4 5 6 7 | 0.4000 0.4000 0.4500 0.4500 0.4625 0.4688 0.4719 0.4734 | 0.6000 0.5000 0.5000 0.4750 0.4750 0.4750 0.4750 0.4750 | -0.5745 -0.5745 -0.1904 -0.1904 -0.0906 -0.0402 -0.0148 -0.0020 | 1.1201 0.2183 0.2183 0.0107 0.0107 0.0107 0.0107 0.0107 | 0.5000 0.4500 0.4750 0.4625 0.4688 0.4719 0.4734 [0.4742] | 0.2183 -0.1904 0.0107 -0.0906 -0.0402 -0.0148 -0.0020 |
Метод Ньютона. Для корректного использования данного метода необходимо, в соответствии с теоремой 2.2 (лекции), определить поведение первой и второй производной функции на интервале уточнения корня и правильно выбрать начальное приближение
.
,
- положительные во всей области определения функции. В качестве начального приближения можно выбрать правую границу интервала
, для которой выполняется неравенство (2.3, лекции):
Дальнейшие вычисления проводятся по формуле , где
,
.
Итерации завершаются при выполнении условия .
Результаты вычислений содержатся в таблице.
k | ||||
0 1 2 3 | 0.6000 0.4838 0.4738 [0.4737] | 1.1201 0.0831 0.0005 | 9.6402 8.2633 8.1585 | -0.1162 -0.0101 -0.0001 |
Метод секущих. В качестве начальных точек зададим: и
.
Дальнейшие вычисления проводятся по формуле ,
Итерации завершаются при выполнении условия .
Результаты вычислений содержатся в таблице.
Метод простой итерации. Исходное уравнение можно записать в виде
Из двух этих вариантов приемлемым является второй, так как, взяв за основной интервал (0.4,0.55) и положив , будем иметь:
2) . Отсюда, на интервале (0.4,0.55)
.