L-12-Spring2018 (826549), страница 2
Текст из файла (страница 2)
áᬮâਬ «î¡ãî ¯àï¬ãî p, ª®â®à ï ¯¥à¥á¥ª ¥â ¯àï¬ë¥ l1 , l2 , l3 .ãáâì A = p ∩ l1 . ® ᢮©áâ¢ã 12.4 ¬ë ¨¬¥¥¬ A ∈/ li , i = 2, 3. ®£¤ , ãç¨âë¢ ïᤥ« ®¥ ¢ëè¥ § ¬¥ç ¨¥, â ª ï ¯àï¬ ï ¥¤¨á⢥ , ¯®í⮬㠨§ «¥¬¬ë 12.1 ¨á¢®©á⢠12.3 á«¥¤ã¥â, çâ® p | ®¡à §ãîé ï ¨§ ᥬ¥©á⢠II, á«¥¤®¢ ⥫ì®, ¯¥à¥á¥ª ¥â ¯àï¬ë¥ li , i = 2, 3, ¢ ª®¥çëå â®çª å, ¨, ¡®«¥¥ ⮣®, ¯® ᢮©áâ¢ã 12.3 ¢á¥®¡à §ãî騥 ¨§ ᥬ¥©á⢠I ¯¥à¥á¥ª îâ ¯àאַ«¨¥©ãî ®¡à §ãîéãî p. ®£¤ , ¤¢¨£ ï p ¢¤®«ì l1 â ª, çâ® p ¯¥à¥á¥ª ¥â li , i = 2, 3, ¢ ª®¥çëå â®çª å, ¬ë ¯®«ã稬¢á¥ ¯àאַ«¨¥©ë¥ ®¡à §ãî騥 ¨§ ᥬ¥©á⢠II, § ç¨â, ãç¨âë¢ ï «¥¬¬ã 12.1,§ ç¥à⨬ ¨ ¢áî ¯®¢¥àå®áâì £¨¯¥à¡®«¨ç¥áª®£® ¯ à ¡®«®¨¤ .¥ á ⥫ì ï ¯«®áª®áâì ª ¯®¢¥àå®á⨠2-£® ¯®à浪 áᬮâਬ ãà ¢¥¨¥ ¯®¢¥àå®á⨠2-£® ¯®à浪 F (x, y, z ) = a11 x2 + a22 y 2 + a33 z 2 + 2a12 xy + 2a23 yz + 2a13 zx+ 2a1 x + 2a2 y + 2a3 z + a0 = ϕ(x, y, z ) + 2a1 x + 2a2 y + 2a3 z + a0= ϕ(x, y, z ) + 2a1 x + 2a2 y + 2a3 z + a0 = 0; (12.4)¯®« £ ¥¬ Fi (x, y, z ) = ai1 x + ai2 y + ai3 z + ai , i = 1, 2, 3.
®¤áâ ¢¨¬ ãà ¢¥¨ï¯àאַ© (12.1) ¢ (12.4), १ã«ìâ ⥠¯®«ã稬 ª¢ ¤à ⮥ ãà ¢¥¨¥At2 + 2Bt + C£¤¥= 0,(12.5)A = ϕ(α, β, γ ) = a11 α2 + a22 β 2 + a33 γ 2 + 2a12 αβ + 2a23 βγ + 2a13 γα,B= F1 (x0 , y0 , z0 )α + F2 (x0 , y0 , z0 )β + F3 (x0 , y0 , z0 )γ,C= F (x0 , y0 , z0 ). ᫨ ¯à ¢«¥¨¥ (α, β, γ ) ¯àאַ© (12.1) ¥ ᨬ¯â®â¨ç¥áª®¥ (A 6= 0), â® ãà ¢¥¨¥ (12.5) ¨¬¥¥â ¤¢ ª®àï t1 , t2 | ¢¥é¥áâ¢¥ë¥ à §«¨çë¥ ¨«¨ ¬¨¬ë¥ ᮯà殮ë¥, ¨«¨ ᮢ¯ ¤ î騥 (¢¥é¥á⢥ë¥).
®¤áâ ¢«ïï í⨠§ ç¥¨ï ¢ (12.5),6¬ë ¯®«ã稬 ¤¢¥ â®çª¨ ¯¥à¥á¥ç¥¨ï (¢¥é¥áâ¢¥ë¥ ¨«¨ ¬¨¬ë¥, ¨«¨, ¡ëâì ¬®¦¥â,ᮢ¯ ¤ î騥) ¯àאַ© (12.1) ¨ ¯®¢¥àå®á⨠(12.4).¯à¥¤¥«¥¨¥ 12.1. ãáâì ¯à ¢«¥¨¥ (α, β, γ ) ¥ ᨬ¯â®â¨ç¥áª®¥ ¯® ®â®è¥¨îª ¯®¢¥àå®á⨠2-£® ¯®à浪 . ᫨ ®¡¥ â®çª¨ ¯¥à¥á¥ç¥¨ï ¯àאַ© x = x0 + αt,l:y = y0 + βt,z = z0 + γt,¨ ¯®¢¥àå®á⨠᫨¢ îâáï ¢ ®¤ã, â® ¯àï¬ ï l §ë¢ ¥âáï ª á ⥫쮩 ª ¯®¢¥àå®á⨠. áᬮâਬ ª á ⥫ìãî ¯àï¬ãî l ª ¯®¢¥àå®á⨠2-£® ¯®à浪 . ª ç¥á⢥â®çª¨ á ª®®à¤¨ â ¬¨ (x0 , y0 , z0 ) ¢®§ì¬¥¬ â®çªã ª á ¨ï, â. ¥. C = F (x0 , y0 , z0 ) = 0. í⮬ á«ãç ¥ ãà ¢¥¨¥ (10.5) ¯à¨¨¬ ¥â ¢¨¤t(At + 2B ) = 0.(12.6)®à¨ ãà ¢¥¨ï (10.6) à ¢ë t1 = 0, t2 = − 2AB .
«ï ⮣®, çâ®¡ë ¢ë¯®«ï«®áìt2 = 0, ¥®¡å®¤¨¬®, ç⮡ë B = 0, çâ® à ¢®á¨«ì®F1 (x0 , y0 , z0 )α + F2 (x0 , y0 , z0 )β + F3 (x0 , y0 , z0 )γ= 0.(12.7)á«®¢¨¥ (12.7) ¨ ¥áâì ãá«®¢¨¥, ª®â®à®¬ã ¤®«¦¥ 㤮¢«¥â¢®àïâì ¯à ¢«ïî騩 ¢¥ªf = (x0 , y0 , z0 ), F (x0 , y0 , z0 ) = 0,â®à (α, β, γ ) ¯àאַ© l, ¯à®å®¤ï饩 ç¥à¥§ â®çªã Mf ª ¯®¢¥àå®á⨠. ®®¡é¥ £®¢®àï,çâ®¡ë ¯àï¬ ï l ¡ë« ª á ⥫쮩 ¢ â®çª¥ Mf, á ¯à ¢«ï¨¬¥¥âáï ¡¥áª®¥ç®¥ ¬®¦¥á⢮ ¯àï¬ëå, ¯à®å®¤ïé¨å ç¥à¥§ â®çªã Mî騬¨ ¢¥ªâ®à ¬¨, 㤮¢«¥â¢®àïî騬¨ ãá«®¢¨î (12.7), â. ¥. ¡¥áª®¥ç®¥ ¬®¦¥á⢮f. ãáâì Ne | ¯à®ª á ⥫ìëå ª ¯®¢¥àå®á⨠2-£® ¯®à浪 ¢ ¤ ®© ¥¥ â®çª¥ M¨§¢®«ì ï â®çª á ª®®à¤¨ â ¬¨ (x, y, z ), ¯à¨ ¤«¥¦ é ï ¥ª®â®à®© ª á ⥫쮩ª ¯àאַ©. ®£¤ (x − x0 , y − y0 , z − z0 ) ¥áâì ¯à ¢«ïî騩 ¢¥ªâ®à í⮩ ¯àאַ©,¨ ® 㤮¢«¥â¢®àï¥â ãà ¢¥¨îF1 (x0 , y0 , z0 )(x − x0 ) + F2 (x0 , y0 , z0 )(y − y0 ) + F3 (x0 , y0 , z0 )(z − z0 ) = 0.(12.8)à ¢¥¨¥ (12.8) | íâ® ãà ¢¥¨¥ ¯«®áª®áâ¨, §ë¢ ¥¬®© ª á ⥫쮩 ¯«®áª®áâìîf = (x0 , y0 , z0 ), F (x0 , y0 , z0 ) = 0.ª ¯®¢¥àå®á⨠2-£® ¯®à浪 ¢ ¤ ®© ¥¥ â®çª¥ M®-¤à㣮¬ã, ãà ¢¥¨¥ (10.8) ¬®¦® § ¯¨á âì ª ª1 ∂F1 ∂F1 ∂F(x0 , y0 , z0 )(x−x0 )+(x0 , y0 , z0 )(y −y0 )+(x , y , z )(z −z0 ) = 0, (12.9)2 ∂x2 ∂y2 ∂z 0 0 07¨«¨ ¦¥, ¥á«¨ ¯®¤áâ ¢¨âì ¢ (12.8) ¢ëà ¦¥¨ï ¤«ï Fi (x0 , y0 , z0 ) ¨ ¯à¨¢¥á⨠¯®¤®¡ë¥,â®F1 (x0 , y0 , z0 )x + F2 (x0 , y0 , z0 )y + F3 (x0 , y0 , z0 )z +(a1 x0 + a2 y0 + a3 z0 + a0 ) = 0.(12.10)®-¤à㣮¬ã, ãà ¢¥¨¥ (12.10) ¬®¦® § ¯¨á âì ¢ ¢¨¤¥(xyz1)a11 a21a31a1a12a22a32a2a13a23a33a3 a1x0a2 y0 = 0.a3z0a01(12.11)¢®©á⢮ 12.5.
à ¢¥¨¥ ª á ⥫쮩 ¥ § ¢¨á¨â ®â ¢ë¡®à ä䨮© á¨áâ¥-¬ë ª®®à¤¨ â.®ª § ⥫ìá⢮. ¤¥« ¥¬ ää¨ãî § ¬¥ã ¯¥à¥¬¥ëå c11x y c21 =c31zc12c22c32c13c23c33 0 c1xc2 y 0 0 ,zc310 0 0 1⮣¤ ãà ¢¥¨¥ (12.4) ¯à¨¬¥â ¢¨¤1c11det C = det c21c31c12c22c32c13c23 6= 0,c33F 0 (x0 , y 0 , z 0 )= F (c11 x0 + c12 y0 + c13 z 0 + c1 , c21 x0 + c22 y0 + c23 z 0 + c2 , c31 x0 + c32 y0 + c33 z 0 + c3 )a011 (x0 )2 +2a012 x0 y 0 +a022 (y 0 )2 +2a013 x0 z 0 +2a023 y 0 z 0 +a033 (z 0 )2 2a01 x0 +2a02 y 0 +2a03 z 0 +a00 = 0. c11 c12 c13 c1xx0c21 c22 c23 c2 y y0 ¡®§ 稬 C = , u = , u0 = .
®£¤ ãà ¢¥¨¥c31 c32 c33 c3zz00 0 0 111(12.11) § ¯¨áë¢ ¥âáï ª ª u Au0 = 0. ®¢®© á¨á⥬¥ ª®®à¤¨ â íâ® ãà ¢¥¨¥§ ¯¨áë¢ ¥âáï ª ª u C (C −1 AC )C −1 u0 = (u0 ) A0 u00 = 0, £¤¥x0 y0 u0 = 0 ,z1x00 y0 u00 = 00 = C −1 u0 ,z01a011 a0A0 = 012a31a01a012a022a032a02a013a023a033a03a1a2 −1 = C AC.a03a0 0¥á®¡ë¥ â®çª¨ ¯®¢¥àå®á⨠2-£® ¯®à浪 ®§¨ª ¥â ¢®¯à®á | ª®£¤ ãà ¢¥¨¥ (12.8) áâ ®¢¨âáï ¥®¯à¥¤¥«¥ë¬? ⮯நá室¨â ⮣¤ , ª®£¤ ®¤®¢à¥¬¥® ¢ë¯®«ïîâáï ãá«®¢¨ïF1 (x0 , y0 , z0 ) = 12 ∂F∂x (x0 , y0 , z0 ) = 0, F2 (x0 , y0 , z0 ) = 1 ∂F (x0 , y0 , z0 ) = 0,2 ∂y(12.12)∂F1F(x,y,z)=(x,y,z)=0,3 0 0 02 ∂z 0 0 0F (x0 , y0 , z0 ) = 0.8 í⮬ á«ãç ¥, ¨á¯®«ì§ãï (12.8), (12.2), ¬ë ¯®«ãç ¥¬, çâ®a1 x0 + a2 y0 + a3 z0 + a0= 0.(12.13)®¢®ªã¯®áâì ãá«®¢¨© (12.12), (12.13) ¬®¦® § ¯¨á âì ¢ ¢¨¤¥a11 a21a31a1 ᫨ =a12a22a32a2 a1x00a2 y0 0 = .a3z00a010a13a23a33a3a12 a13 a1a22 a23 a2 6= 0, â®a32 a33 a3a2 a3 a0(0, 0, 0, 0).
ª¨¬ ®¡à §®¬,a11a21det a31a1(12.14)à¥è¥¨¥ á¨á⥬ë (12.14) ¥¤¨á⢥-®¥ | íâ® ¢¥ªâ®à¥á«¨ ç¥â¢¥àª (x0 , y0 , z0 , 1) ï¥âáïà¥è¥¨¥¬ á¨á⥬ë (12.14), â® á ¥®¡å®¤¨¬®áâìî ¤®«¦® ¢ë¯®«ïâìáï à ¢¥á⢮ = 0.¯à¥¤¥«¥¨¥ 12.2. ®¢¥àå®áâì 2-£® ¯®à浪 , ª®íä䍿¨¥âë ãà ¢¥¨ï ª®â®à®© 㤮¢«¥â¢®àïîâ ãá«®¢¨î = 0, §ë¢ îâáï ¢ë஦¤ î饩áï, â®çª í⮩¯®¢¥àå®áâ¨ á ª®®à¤¨ â ¬¨ (x0 , y0 , z0 ), 㤮¢«¥â¢®àïîé ï ãá«®¢¨ï¬F (x , y , z ) = 1 0 0 0F2 (x0 , y0 , z0 ) =F3 (x0 , y0 , z0 ) =1 ∂F2 ∂x (x0 , y0 , z0 ) = 0,1 ∂F (x , y , z ) = 0,2 ∂y 0 0 01 ∂F (x , y , z ) = 0,2 ∂z 0 0 0| ®á®¡®© â®çª®© ¯®¢¥àå®á⨠.ਬ¥à 12.1.
10 ®ãáx2a222+ yb2 = zc2 , ¥£® ®á®¡ ï â®çª | ç «® ª®®à¤¨ â; 20¯ à ¯¥à¥á¥ª îé¨åáï ¯«®áª®á⥩: ¯àï¬ ï ¯¥à¥á¥ç¥¨ï íâ¨å ¯«®áª®á⥩ ï¥âáאַ¦¥á⢮¬ ¥¥ ®á®¡ëå â®ç¥ª; 3) ¯ à ᮢ¯ ¤ îé¨å ¯«®áª®á⥩: ¢áï ¯®¢¥àå®áâìá®á⮨⠨§ ®á®¡ëå â®ç¥ª. ª ¨ ¢ á«ãç ¥ ªà¨¢ëå 2-£® ¯®à浪 ª á ⥫ì ï ¯«®áª®áâì ã ¯®¢¥àå®á⨠2-£®¯®à浪 ®¯à¥¤¥«ï¥âáï ¢ ¥®á®¡®© â®çª¥.®à¤ë, ¤¨ ¬¥âà «ìë¥ ¯«®áª®á⨨ æ¥âàë ᨬ¬¥âਨ ¯®¢¥àå®á⨠2-£® ¯®à浪 ¯à¥¤¥«¥¨¥ 12.3. ®à¤®© ¯®¢¥àå®á⨠2-£® ¯®à浪 §ë¢ ¥âáï ®â१®ª, ᮥ¤¨ïî騩 â®çª¨ ¯¥à¥á¥ç¥¨ï ¯®¢¥àå®áâ¨ á ¯àאַ© l, ¨¬¥î饩 ¥ ᨬ¯â®â¨ç¥áª®¥ ¯® ®â®è¥¨î ª ¯®¢¥àå®á⨠¯à ¢«¥¨¥.9 áᬮâਬ ¯àï¬ãî (12.1), ¨¬¥îéãî ¥ ᨬ¯â®â¨ç¥áª®¥ ¯® ®â®è¥¨î ª ¯®¢¥àå®á⨠2-£® ¯®à浪 ¯à ¢«¥¨¥ (α, β, γ ), ¯¥à¥á¥ª îéãî ¯®¢¥àå®áâì ¢¤¢ãå â®çª å M1 , M2 .
¡®§ 稬 x1 = x0 + αt1 ,y1 = y0 + βt1 ,z1 = z0 + γt1 ,| ª®®à¤¨ âë â®çª¨ M1 , x2 = x0 + αt2 ,y2 = y0 + βt2 ,z2 = z0 + γt2 ,| ª®®à¤¨ âë â®çª¨ M2 ,£¤¥ t1 , t2 | ª®à¨ ãà ¢¥¨ï (12.5). ®çª M0 = (x0 , y0 , z0 ) ï¥âáï á¥à¥¤¨®©®â१ª , ᮥ¤¨ïî饣® â®çª¨ M1 , M2 , ⮣¤ ¨ ⮫쪮 ⮣¤ , ª®£¤ ¢ë¯®«ïîâáïá®®â®è¥¨ït +tt +tt1 + t2α= β 1 2 = γ 1 2 = 0 ⇒ t1 + t2 = 0,222â ª ª ª α2 +β 2 +γ 2 > 0. ¤ ª®, ª ª ¬ë ¯®¬¨¬, ¤«ï ª®à¥© ª¢ ¤à âëå ãà ¢¥¨©¢á¥£¤ ¢ë¯®«ï¥âáï ⮦¤¥á⢮ t1 + t2 = − 2AB , ®âªã¤ B = 0. ª¨¬ ®¡à §®¬, ¬ë ãáâ ®¢¨«¨ á«¥¤ãî饥¢®©á⢮ 12.6.
®çª M0 = (x0 , y0 , z0 ) | á¥à¥¤¨ å®à¤ë [M1 , M2 ] ¯®¢¥àå®áâ¨2-£® ¯®à浪 , ¯à¨ ¤«¥¦ 饩 ¯àאַ© á ¥ ᨬ¯â®â¨ç¥áª¨¬ ¯® ®â®è¥¨î ª¯®¢¥àå®á⨠¯à ¢«¥¨¥¬ (α, β, γ ), ⮣¤ ¨ ⮫쪮 ⮣¤ , ª®£¤ ¢ë¯®«ï¥âáï⮦¤¥á⢮F1 (x0 , y0 , z0 )α + F2 (x0 , y0 , z0 )β + F3 (x0 , y0 , z0 )γ= 0.(12.15)à ¢¥¨¥ (12.15) ¬®¦® § ¯¨á âì ¢ á«¥¤ãî饬 íª¢¨¢ «¥â®¬ ¢¨¤¥(a11 α + a12 β + a13 γ )x0 + (a21 α + a22 β + a23 γ )y0 + (a31 α + a32 β + a33 γ )z0+ (a1 α + a2 β + a3 γ ) = 0.«¥¤á⢨¥ 12.1. ¥à¥¤¨ë (x0 , y0 , z0 ) «î¡ëå ¯ à ««¥«ìëå å®à¤, ¯à ¢«ïî騩 ¢¥ªâ®à ª®â®àëå ¨¬¥¥â ¥ ᨬ¯â®â¨ç¥áª®¥ ¯® ®â®è¥¨î ª ¯®¢¥àå®áâ¨2-£® ¯®à浪 ¯à ¢«¥¨¥ (α, β, γ ), ¯à¨ ¤«¥¦ â ¯«®áª®á⨠F1 (x0 , y0 , z0 )α +F2 (x0 , y0 , z0 )β + F3 (x0 , y0 , z0 )γ = 0.¯à¥¤¥«¥¨¥ 12.4.
«®áª®áâì, ®¯à¥¤¥«ï¥¬ãî ãà ¢¥¨¥¬F1 (x, y, z )α + F2 (x, y, z )β + F3 (x, y, z )γ= 0,10 §®¢¥¬ ¤¨ ¬¥âà «ì®© ¯«®áª®áâìî, ᮮ⢥âáâ¢ãî饩 å®à¤ ¬ ¥ ᨬ¯â®â¨ç¥áª®£® ¯® ®â®è¥¨î ª ¯®¢¥àå®á⨠2-£® ¯®à浪 ¯à ¢«¥¨ï (α, β, γ ), ¨«¨ ¯«®áª®áâìî, ᮯà殮®© ¥ ᨬ¯â®â¨ç¥áª®¬ã ¯à ¢«¥¨î (α, β, γ ).¢®©á⢮ 12.7. ¨ ¬¥âà «ì ï ¯«®áª®áâì ¯®¢¥àå®á⨠2-£® ¯®à浪 , ᮯà殮- ï ¥ ᨬ¯â®â¨ç¥áª®¬ã ¯à ¢«¥¨î, ¥ § ¢¨á¨â ®â ¢ë¡à ®© ä䨮© á¨áâ¥¬ë ª®®à¤¨ â.®ª § ⥫ìá⢮ ¬®¦¥â ¡ëâì ¯®«ã祮 â®ç® â ª¦¥, ª ª ¨ ¤®ª § ⥫ìá⢮ ᮮ⢥âáâ¢ãî饣® ã⢥ত¥¨ï ¤«ï ªà¨¢ëå 2-£® ¯®à浪 .¥¥¬¬ 12.2. «ï «î¡®© ¯®¢¥àå®á⨠2-£® ¯®à浪 áãé¥áâ¢ã¥â âਠ«¨¥©®¥§ ¢¨á¨¬ëå ¥ ᨬ¯â®â¨ç¥áª¨å ¯à ¢«¥¨ï.®ª § ⥫ìá⢮.
áᬮâਬ ¬®¦¥á⢮ â®ç¥ª (x, y, z ), 㤮¢«¥â¢®àïîé¨å ãá«®¢¨î ϕ(x, y, z ) = 0. ®¢®ªã¯®áâì ¢¥ªâ®à®¢ (x, y, z ) ï¥âáï ᮢ®ªã¯®áâìî ¢á¥å ᨬ¯â®â¨ç¥áª¨å ¯à ¢«¥¨¨ ¤«ï ¯®¢¥àå®á⨠2-£® ¯®à浪 , ®¯à¥¤¥«ï¥¬®© ãà ¢¥¨¥¬ (12.4). ¯«®áª®á⨠z = 1 à áᬮâਬ ªà¨¢ãî 2-£® ¯®à浪 ϕ(x, y, 1) = 0.®§ì¬¥¬ ¯«®áª®á⨠z = 1 «î¡ë¥ âà¨ à §«¨çë¥ â®çª¨ c ª®®à¤¨ â ¬¨ (xi , yi , 1),i = 1, 2, 3, ¥ ¯à¨ ¤«¥¦ 騥 ªà¨¢®©, ®¯à¥¤¥«ï¥¬®© ãà ¢¥¨¥¬ ϕ(x, y, 1) = 0,â ª, çâ® ¢¥ªâ®àë (xi , yi , 1), i = 1, 2, 3, ¥ ª®¬¯« àë.
®£¤ ¢¥ªâ®àë (xi , yi , 1),i = 1, 2, 3, ¤ î⠨᪮¬ë¥ ¥ ᨬ¯â®â¨ç¥áª¨¥ ¯à ¢«¥¨ï.¥¥®à¥¬ 12.3 (® æ¥âॠᨬ¬¥âਨ ¯®¢¥àå®á⨠2-£® ¯®à浪 ). 10 ᫨â®çª M á ª®®à¤¨ â ¬¨ (x0 , y0 , z0 ) | æ¥âà ᨬ¬¥âਨ ¯®¢¥àå®á⨠¯®¢¥àå®á⨠2-£® ¯®à浪 , â® á ¥®¡å®¤¨¬®áâìî ¢ë¯®«ïîâáï à ¢¥á⢠F(x,y,z)=0,1000 a11 x0 + a12 y0 + a13 z0 + a1 = 0,F2 (x0 , y0 , z0 ) = 0, ⇔ a21 x0 + a22 y0 + a23 z0 + a2 = 0,(12.16)F3 (x0 , y0 , z0 ) = 0,a31 x0 + a32 y0 + a33 z0 + a3 = 0.20 áïª ï â®çª á ª®®à¤¨ â ¬¨ (x0 , y0 , z0 ), 㤮¢«¥â¢®àïîé ï ãà ¢¥¨ï¬ (12.16),ï¥âáï æ¥â஬ ᨬ¬¥âਨ ¯®¢¥àå®á⨠¯®¢¥àå®á⨠2-£® ¯®à浪 .®ª § ⥫ìá⢮.
10 § ®¯à¥¤¥«¥¨ï æ¥âà ᨬ¬¥âਨ ¢ë⥪ ¥â, çâ® M ¤¥«¨â ¯®¯®« ¬ «î¡ãî ¯à®å®¤ïéãî ç¥à¥§ ¥£® å®à¤ã. ®£¤ ¨§ ᢮©á⢠12.6 ¨ «¥¬¬ë 12.2¢ë⥪ ¥â, çâ® x1 y1 1F1 (x0 , y0 , z0 )0F1 (x0 , y0 , z0 )0 x2 y2 1 F2 (x0 , y0 , z0 ) = 0 ⇒ F2 (x0 , y0 , z0 ) = 0 .x3 y3 1F3 (x0 , y0 , z0 )0F3 (x0 , y0 , z0 )020 ý¤¢¨¥¬þ ª®®à¤¨ âë (x, y, z ) ¯® ¯à ¢¨«ã~ + x0 ,x=xy = y~ + y0 ,z = z~ + z0 .11®£¤ F (~x + x0 , y~ + y0 , z~ + z0 ) = ϕ(~x, y~, z~) + F (x0 , y0 , z0 ) = 0.(12.17)®ïâ®, çâ® ç «® ª®®à¤¨ â | æ¥âà ᨬ¬¥âਨ ýᤢ¨ã⮩þ ¯®¢¥àå®á⨠(12.17),¯®í⮬ã (x0 , y0 , z0 ) | æ¥âà ᨬ¬¥âਨ ý¨á室®©þ ¯®¢¥àå®á⨠F (x, y, z ) = 0.
¥.