Диссертация (1144294), страница 12
Текст из файла (страница 12)
Nonsmooth analysis and control theory / F. H. Clarke, Y. S. Ledyaev,R. J. Stern, P. R. Wolenski. — Springer Science and Business Media, 2008.— Vol. 178.61. Krasovskiy N.N., Subbotin A.I., Kotz S. Game-Theoretical Control Problems.— New York : Springer-Verlag, 1987.62.
Hermes Henry. Discontinuous vector fields and feedback control. — 1967.63. Filippov A.F. Differential equations with discontinuous right-hand sides. //Mathematical annual. — 1960. — Vol. 51, no. 1. — Pp. 99–128.64. Filippov A.F. On Certain Questions in the Theory of Optimal Control // Jour-nal of the Society for Industrial and Applied Mathematics. — 1962. — Vol.
1,no. 1. — Pp. 76–84.65. Boltyansk V.G. Mathematical methods of optimal control. — Nauka, Moscow[in Russian], 1969.66. Anosov D.V. On the stability of the equilibrium positions of relay systems //Automation and Remote Control [in Russian]. — 1959. — Vol. 20. — Pp. 135–149.8567.
Aizerman M.A., Pyatnitskiy E.S. Fundamentals of the theory of discontinuoussystems. I, II // Automation and Remote Control (in Russian). — 1974. — no.7, 8. — Pp. 33–47, 39–61.68. Aubin J. P., Cellina A. Differential inclusions: Set-valued maps and viabilitytheory.
— Springer-Verlag New York, Inc., 1984.69. Yakubovich V. A., Leonov G. A., Gelig A. Kh. Stability of Stationary Setsin Control Systems with Discontinuous Nonlinearities. — Singapure: WorldScientific, 2004.70. Tolstonogov A.A. Differential Inclusions in a Banach Space. — Springer Scienceand Business Media], 2012.71.
Vyshnegradskii I.A. Direct-acting regulators // Izvestia Peterburgskogo Tech-nologicheskogo Instituta. — 1877. — Pp. 21–62.72. Rayleigh J. W. S. The theory of sound. — London: Macmillan, 1877.73. der Pol B. Van. A theory of the amplitude of free and forced triode vibrations // Radio Review. — 1920.
— Vol. 1. — Pp. 701–710.74. Lyapunov A. M. The General Problem of the Stability of Motion. — Kharkov,1892. — (English transl. Academic Press, NY, 1966).75. Н.Е. Жуковский. Теория регулирования хода машин. Часть 1. М. — Типолитогр. Т-ва И. Н. Кушнерев и Ко, 1909.76. C. Bissel. A.A.
Andronov and the development of Soviet control engineering //IEEE Control Systems Magazine. — 1998. — Vol. 18. — Pp. 56–62.77. Андронов А.А. Майер А.Г. Задача Мизеса в теории прямого регулированияи теория точечных преобразований поверхностей // Доклады АН СССР.— 1944. — Vol. 32. — Pp. 58–60.78. Lurie A. I., Postnikov V.
N. To the stability theory of controlled systems //Applied Mathematics and Mechanics (in Russian). — 1944. — Vol. 8, no. 3. —Pp. 246–248.8679. Kalman R. E. Physical and Mathematical mechanisms of instability in nonlinear automatic control systems // Transactions of ASME. — 1957. — Vol. 79,no. 3. — Pp. 553–566.80.
Lurie A.I., Postnikov V.N. On the stability theory of control systems // Sov.Appl. Math. — 1944. — Vol. 8, no. 3. — Pp. 246–248. — (transl.).81. Leonov G. A., Kuznetsov N. V. Hidden attractors in dynamical systems. Fromhidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems tohidden chaotic attractors in Chua circuits // International Journal of Bifur-cation and Chaos.
— 2013. — Vol. 23, no. 1. — art. no. 1330002.82. Fitts R. E. Two counterexamples to Aizerman’s conjecture // Trans. IEEE. —1966. — Vol. AC-11, no. 3. — Pp. 553–556.83. Barabanov N. E. On the Kalman problem // Sib. Math. J. — 1988. — Vol. 29,no. 3. — Pp. 333–341.84. Bernat J., Llibre J. Counterexample to Kalman and Markus-Yamabe conjectures in dimension larger than 3 // Dynamics of Continuous, Discrete andImpulsive Systems. — 1996.
— Vol. 2, no. 3. — Pp. 337–379.85. MeistersG.ABiographyoftheMarkus-YamabeConjecture//http://www.math.unl.edu/ gmeisters1/papers/HK1996.pdf. — 1996.86. Glutsyuk A. A. Meetings of the Moscow Mathematical Society (1997) // Rus-sian mathematical surveys. — 1998. — Vol. 53, no. 2. — Pp. 413–417.87. Leonov G.
A., Bragin V. O., Kuznetsov N. V. Algorithm for ConstructingCounterexamples to the Kalman Problem // Doklady Mathematics. — 2010.— Vol. 82, no. 1. — Pp. 540–542.88. Algorithms for Finding Hidden Oscillations in Nonlinear Systems. The Aizerman and Kalman Conjectures and Chua’s Circuits / V. O. Bragin, V.
I. Vagaitsev, N. V. Kuznetsov, G. A. Leonov // Journal of Computer and SystemsSciences International. — 2011. — Vol. 50, no. 4. — Pp. 511–543.8789. Leonov G. A., Kuznetsov N. V. Algorithms for searching for hidden oscillationsin the Aizerman and Kalman problems // Doklady Mathematics. — 2011. —Vol. 84, no. 1. — Pp. 475–481.90. Aizerman M.A., Pyatnitskii E.S.
Foundations of theory of discontinuous systems. I // Avtomat. Telemekh. — 1974. — no. 7. — Pp. 33–37. — (in Russian).91. Gelig A.Kh., Leonov G.A., Yakubovich V.A. Stability of Nonlinear Systemswith Nonunique Equilibrium (in Russian). — Nauka, 1978. — (English transl:Stability of Stationary Sets in Control Systems with Discontinuous Nonlinearities, 2004, World Scientific).92. Андронов А. А., Майер А. Задача Вышнеградского в теории прямого регулирования.
I // Автоматика и телемеханика. — 1947. — Т. 8, № 5. —С. 314–334.93. Piiroinen P. T., Kuznetsov Yu. A. An event-driven method to simulate Filippov systems with accurate computing of sliding motions // ACM Transactionson Mathematical Software (TOMS). — 2008. — Vol. 34, no. 3. — P. 13.94. Driscoll T. A, Hale N., Trefethen L.
N. Chebfun Guide. — Pafnuty Publications, 2014. http://www.chebfun.org/docs/guide/.95. Леонов Г.А. Функции Ляпунова в глобальном анализе хаотических систем // Украинский математический журнал. — 2018. — (в печати).96. Ruelle D., Takens F. On the nature of turbulence // Communications in math-ematical physics. — 1971.
— Vol. 20, no. 3. — Pp. 167–192.97. Sparrow C. The Lorenz Equations: Bifurcations, Chaos and Strange Attractors.— Berlin: Applied Mathematical Sciences, 41, Springer, 1982.98. Structures in dynamics: finite dimensional deterministic studies / H. W. Broer,F. Dumortier, S. J. Van Strien, F. Takens. — Elsevier, 1991. — Vol.
2.99. Sprott J. C. Strange attractors: creating patterns in chaos. — Citeseer, 1993.100. Neimark J. I., Landa P. S. Stochastic and chaotic oscillations. — SpringerScience & Business Media, 2012. — Vol. 77.88101. Hirsch M. W., Smale S., Devaney R. L. Differential equations, dynamicalsystems, and an introduction to chaos. — Academic press, 2012.102. Methods of Qualitative Theory in Nonlinear Dynamics: Part 1 / L.
P. Shilnikov,A. L. Shilnikov, D. V. Turaev, L. Chua. — World Scientific, 1998.103. Shilnikov L., Turaev D., Chua L. Methods of Qualitative Theory in NonlinearDynamics: Part 2. — World Scientific, 2001.104. Boichenko V. A., Leonov G. A., Reitmann V. Dimension Theory for OrdinaryDifferential Equations. — Stuttgart: Teubner, 2005.105. Leonov G.
A. Strange attractors and classical stability theory. — St.Petersburg:St.Petersburg University Press, 2008.106. Elhadj Z., Sprott J. C. 2-D quadratic maps and 3-D ODE systems: A RigorousApproach. — World Scientific, 2010. — Vol. 73.107. Wiggins S. Global bifurcations and chaos: analytical methods. — SpringerScience & Business Media, 2013.
— Vol. 73.108. Shimada I., Nagashima T. A Numerical Approach to Ergodic Problem of Dissipative Dynamical Systems // Progress of Theoretical Physics. — 1979. —Vol. 61, no. 6. — Pp. 1605–1616.109. Doedel E. AUTO: Software for continuation and bifurcation problems in ordinary differential equations.
— California Institute of Technology, 1986.110. Parker T.S., Chua L.O. Practical Numerical Algorithms for Chaotic Systems.— Springer-Verlag, 1989.111. Allgower E. L., Georg K. Numerical continuation methods: an introduction.— New York: Springer-Verlag, 1990.112. Dellnitz M., Junge O. Set oriented numerical methods for dynamical systems //Handbook of Dynamical Systems. — Elsevier Science, 2002.
— Vol. 2. —Pp. 221–264.89113. Krauskopf B., Osinga H. M., Galan-Vioque J. (Eds.). Numerical ContinuationMethods for Dynamical Systems. — Dordrecht. The Netherlands: Springer,2007.114. The discontinuity problem and "chaos"of Lorenz’s model / S. OuYang, Y. Wu,Y. Lin, C. Li // Kybernetes. — 1998. — Vol. 27, no. 6/7. — Pp. 621–635.115. OuYang Shoucheng, Lin Yi.
Problems with Lorenz’s Modeling and the Algorithm of Chaos Doctrine // Frontiers In The Study Of Chaotic DynamicalSystems With Open Problems. — World Scientific, 2011. — Vol. 16. — Pp. 1–29.116. Viana M. What’s new on Lorenz strange attractors? // The MathematicalIntelligencer. — 2000. — Vol. 22, no. 3. — Pp. 6–19.117. Stewart I. Mathematics: The Lorenz attractor exists // Nature.
— 2000. —Vol. 406, no. 6799. — Pp. 948–949.118. Leonov G. A. Shilnikov chaos in Lorenz-like systems // International Journalof Bifurcation and Chaos. — 2013. — Vol. 23, no. 03. — art. num. 1350058.119. Leonov G. A. Asymptotic integration method for the Lorenz-like system //Doklady Mathematics. — 2015. — Vol. 462, no. 5.
— Pp. 1–7.120. Chen G., Ueta T. Yet another chaotic attractor // International Journal ofBifurcation and Chaos. — 1999. — Vol. 9, no. 7. — Pp. 1465–1466.121. Lu J., Chen G. A new chaotic attractor coined // Int. J. Bifurcation andChaos. — 2002. — Vol. 12. — Pp. 1789–1812.122. Tigan G., Opriş D. Analysis of a 3D chaotic system // Chaos, Solitons &Fractals. — 2008. — Vol. 36, no. 5. — Pp.
1315–1319.123. Yang Q., Chen G. A chaotic system with one saddle and two stable nodefoci // International Journal of Bifurcation and Chaos. — 2008. — Vol. 18. —Pp. 1393–1414.124. Barboza R., Chen G. On the global boundedness of the Chen system // In-ternational Journal of Bifurcation and Chaos. — 2011. — Vol. 21, no.
11. —Pp. 3373–3385.90125. Zhang F., Liao X., Zhang G. On the global boundedness of the Lü system //Applied Mathematics and Computation. — 2016. — Vol. 284. — Pp. 332–339.126. Zhang F., Mu C., Li X. On the boundness of some solutions of the Lü system //International Journal of Bifurcation and Chaos. — 2012. — Vol. 22, no. 01. —P.