Диссертация (1144294), страница 13
Текст из файла (страница 13)
1250015.127. Leonov G.A., Kuznetsov N.V. On differences and similarities in the analysis ofLorenz, Chen, and Lu systems // Applied Mathematics and Computation. —2015. — Vol. 256. — Pp. 334–343.128. Yakubovich V. A., Leonov G. A., Gelig A. Kh. Stability of Stationary Setsin Control Systems with Discontinuous Nonlinearities. — Singapure: WorldScientific, 2004.129.
Leonov G.A., Shumafov M.M. Stabilization of Linear Systems. — Cambridge:Cambridge Scientific Publishers, 2012.130. Zubov N.E. Vorob’eva E.A. Mikrin E.A. Misrikhanov M.Sh. Ryabchenko V.N.Timakov S.N. Synthesis of stabilizing spacecraft control based on generalizedAckermann’s formula // Journ. of Computer and Systems Sciences Interna-tional. — 2011. — Vol. 50. — Pp.
93–103.131. Zubov N.E. Mikrin E.A. Misrikhanov M.Sh. Ryabchenko V.N. Synthesis ofcontrols for a spacecraft that optimize the pole placement of the close-loopcontrol system // Journ. of Computer and Systems Sciences International. —2012. — Vol. 51. — Pp. 431–444.132. The use of the exact pole placement algorithm for the control of spacecraftmotion / N.E. Zubov, E.A.
Mikrin, M.Sh. Misrikhanov et al. // Journ. ofComputer and Systems Sciences International. — 2013. — Vol. 52. — Pp. 129–144.133. Modification of the exact pole placement method and its application for thecontrol of spacecraft motion / N.E. Zubov, E.A. Mikrin, M.Sh. Misrikhanov,V.N. Ryabchenko // Journ. of Computer and Systems Sciences International.— 2013. — Vol. 52. — Pp. 279–292.91134. Popov V.
M. Hyperstability of control systems. — 1973.135. LaSalle J. P. Some extensions of Liapunov’s second method // IRE Transac-tions on circuit theory. — 1960. — Vol. 7, no. 4. — Pp. 520–527.136. Grebogi C., Ott E., Yorke J.A. Fractal basin boundaries, long-lived chaotictransients, and unstable-unstable pair bifurcation // Physical Review Letters.— 1983. — Vol. 50, no. 13. — Pp.
935–938.137. Lai Y.C., Tel T. Transient Chaos: Complex Dynamics on Finite Time Scales.— New York: Springer, 2011.138. Wiggins S. Global Bifurcations and Chaos. Analytical Methods. — New York:Springer, 1988.139. Homburg Ale Jan, Sandstede Björn. Homoclinic and heteroclinic bifurcationsin vector fields // Handbook of dynamical systems. — 2010.
— Vol. 3. —Pp. 379–524.140. Poincare H. Les methodes nouvelles de la mecanique celeste. Vol. 1-3. — Paris:Gauthiers-Villars, 1892, 1893, 1899. — [English transl. edited by D. Goroff:American Institute of Physics, NY, 1993].141. Kuznetsov Yu.A., Muratori S., Rinaldi S. Bifurcations and chaos in a periodicpredator-prey model // International Journal of Bifurcation and Chaos. —1992. — Vol. 2, no. 01. — Pp. 117–128.142. Champneys A.R. Homoclinic orbits in reversible systems and their applicationsin mechanics, fluids and optics // Physica D: Nonlinear Phenomena. — 1998.— Vol. 112, no.
1-2. — Pp. 158–186.143. Argoul F., Arneodo A., Richetti P. Experimental evidence for homoclinic chaosin the Belousov-Zhabotinskii reaction // Physics Letters A. — 1987. — Vol.120, no. 6. — Pp. 269–275.144. Tricomi F. Integrazione di unequazione differenziale presentatasi in elettrotechnica // Annali della R. Shcuola Normale Superiore di Pisa. — 1933. — Vol. 2,no. 2. — Pp. 1–20.92145.
Leonov G.A. General existence conditions of homoclinic trajectories in dissipative systems. Lorenz, Shimizu-Morioka, Lu and Chen systems // PhysicsLetters A. — 2012. — Vol. 376. — Pp. 3045–3050.146. Leonov G.A. Shilnikov chaos in Lorenz-like systems // International Journalof Bifurcation and Chaos. — 2013. — Vol. 23, no. 03. — art. num. 1350058.147. Leonov G.A. Fishing principle for homoclinic and heteroclinic trajectories //Nonlinear Dynamics. — 2014.
— Vol. 78, no. 4. — Pp. 2751–2758.148. Leonov G.A. Bounds for attractors and the existence of homoclinic orbits inthe Lorenz system // Journal of Applied Mathematics and Mechanics. — 2001.— Vol. 65, no. 1. — Pp. 19–32.149. Леонов Г. А. Задача Трикоми для динамической системы ШимицуМориока // Докл. РАН. Матем. — 2012. — no. 6. — Pp. 603–606.150. Леонов Г. А. Критерии существования гомоклинических траекторий всистемах Лу и Чена // Докл. РАН.
Матем. — 2013. — no. 6. — Pp. 634–638.151. Леонов Г. А. Системы Ресслера. Оценки размерности аттракторов игомоклинические траектории // Докл. РАН. Матем. — 2014. — no. 6.— Pp. 442–444.152. Леонов Г. А. Задача Трикоми о существовании гомоклиническихтраекторий в диссипативных системах // ПММ. — 2013. — no. 3. — Pp.
410–420.153. Leonov G.A. Necessary and sufficient conditions of the existence of homoclinictrajectories and cascade of bifurcations in Lorenz-like systems: birth of strangeattractor and 9 homoclinic bifurcations // Nonlinear Dynamics. — 2016. —Vol. 84, no. 2. — Pp. 1055–1062.154. Leonov G.A., Kuznetsov N.V., Mokaev T.N. Homoclinic orbits, and selfexcited and hidden attractors in a Lorenz-like system describing convectivefluid motion // The European Physical Journal Special Topics. — 2015.
— Vol.224, no. 8. — Pp. 1421–1458.93155. Finite-time Lyapunov dimension and hidden attractor of the Rabinovich system / N.V. Kuznetsov, G.A. Leonov, T.N. Mokaev et al. // Nonlinear Dynam-ics. — 2018. — Vol. 92, no. 2. — Pp. 267–285.156. Lozi R., Pchelintsev A.N. A new reliable numerical method for computingchaotic solutions of dynamical systems: the Chen attractor case // Internation-al Journal of Bifurcation and Chaos. — 2015. — Vol. 25, no. 13. — P. 1550187.157.
Champneys A.R., Kuznetsov Yu.A., Sandstede B. A numerical toolbox forhomoclinic bifurcation analysis // International Journal of Bifurcation andChaos. — 1996. — Vol. 6. — Pp. 867–888.158. Doedel E.J., et. al. AUTO-07P: Continuation and bifurcation software for ordinary differential equations. — 2007.
http://www.dam.brown.edu/people/sandsted/auto/auto07p.pdf.159. Райтманн Ф. Динамические cистемы, аттракторы и оценки их размерности. — 2013. — С. 222.160. Coddington E. A., Levinson N. Theory of ordinary differential equations. —Tata McGraw-Hill Education, 1995.161. Hartman P. Ordinary differential equations. — John Willey & Sons, New-York,1964.162. Hirsch M.
W., Smale S., Devaney R. L. Differential equations, dynamicalsystems, and an introduction to chaos. — Elsevier Academic Press, 2004. —Vol. 60 of Pure and Applied Mathematics.163. Teschl G. Ordinary differential equations and dynamical systems. — AmericanMathematical Soc., 2012. — Vol. 140 of Graduate Studies in Mathematics.164. Nemytskii V.V., Stepanov V.V.
Qualitative Theory of Differential Equations.— Princeton: Princeton Univ. Press., 1960.165. Birkhoff G.D. Dynamical Systems. — American Mathematical Society, 1927.94166. Ladyzhenskaya O.A. Determination of Minimal Global Attractors for theNavier-Stokes Equations and other Partial Differential Equations // RussianMathematical Surveys.
— 1987. — Vol. 42, no. 6. — Pp. 25–60.167. Babin A. V., Vishik M. I. Attractors of Evolution Equations. — Amsterdam:North-Holland, 1992.168. Temam R. Infinite-dimensional Dynamical Systems in Mechanics and Physics.— 2nd edition. — New York: Springer-Verlag, 1997.169. Chueshov I. Introduction to the Theory of Infinite-dimensional Dissipative Systems. Electronic library of mathematics. — ACTA, 2002.170.
Babin A.V. Global attractors in PDE // Handbook of Dynamical Systems. —Elsevier Science, 2006. — Vol. 1B. — Pp. 983–1085.171. Chepyzhov V.V., Goritskii A. Yu. Unbounded attractors of evolution equations // Adv. Sov. Math. — 1992. — Vol. 10. — Pp. 85–128.172. Levinson N. Transformation theory of non-linear differential equations of thesecond order // Annals of Mathematics. — 1944. — Pp. 723–737.173. Yoshizawa T. Stability theory by Liapunov’s second method. — Math. Soc.Japan, 1966.174.
Leonov G.A., Reitman V. Attraktoreingrenzung fur nichtlineare Systeme. —Leipzig: Teubner, 1987.175. Kuznetsov N. V., Leonov G. A., Vagaitsev V. I. Analytical-numerical methodfor attractor localization of generalized Chua’s system // IFAC ProceedingsVolumes (IFAC-PapersOnline). — 2010. — Vol. 4, no. 1. — Pp. 29–33.176. Leonov G. A., Kuznetsov N. V., Vagaitsev V.