Главная » Просмотр файлов » Глава 16. Атом водорода в квантовой механике

Глава 16. Атом водорода в квантовой механике (1121336), страница 2

Файл №1121336 Глава 16. Атом водорода в квантовой механике (Электронные лекции) 2 страницаГлава 16. Атом водорода в квантовой механике (1121336) страница 22019-05-09СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

.

Последнее уравнение описывает одномерное движение в поле с потенциальной энергией

.

На первом месте здесь стоит потенциальная энергия электрона. Числитель второго слагаемого равен собственному значению квадрата момента. В связи с этим величину

в квантовой теории, как и в классической механике, принято называть «центробежным потенциалом», а сумму (5.4) — «эффективным потенциалом». Профиль эффективного потенциала схематически изображён на рис.16.5.1.

На больших расстояниях от ядра превалирует кулоновский потенциал, а на малых — центробежный. Поэтому эффективный потенциал имеет минимум. Его зависимость от r напоминает яму конечной глубины, но в отличие от ямы здесь пологие края.

Уравнение (5.3) показывает, что задача о радиальном движении в кулоновском поле сводится к задаче об одномерном движении в области, ограниченной с одной стороны. Как показано во втором разделе девятой главы, ограниченное одномерное движение является невырожденным. Отсюда следует заключение об отсутствии вырождения по радиальной координате и в случае кулоновского поля. Таким образом, вырождение волновой функции кулоновского поля обусловлено исключительно её угловой частью.

Перейдём к определению энергетических уровней, поставив условие ограниченности волновой функции.

16.6. Вычисление радиальной части волновой функции

Раскроем радиальную часть лапласиана :

.

Подставив полученное выражение в (3.4), приходим к уравнению

.

Его, как и уравнение, описывающее линейный осциллятор, решаем методом разложения в ряд с предварительным выделением особых точек.

Особые точки

В рассматриваемой здесь задаче присутствуют две особенности: бесконечно удалённая точка и начало координат . Введём обозначения для волновой функции на больших расстояниях от ядра и R0 — вблизи него. Для выяснения зависимости опустим в (6.1) все слагаемые, содержащие в знаменателе r. Получающееся в результате уравнение

имеет решение

.

Из условия ограниченности волновой функции вытекает требование

и окончательно приходим к результату

Поведение волновой функции вблизи ядра определяется как раз теми слагаемыми, которые мы опустили при поиске . Предположим, что орбитальный момент отличен от нуля: . Тогда в квадратных скобках (6.1) можно пренебречь первым и вторым членами по сравнению с центробежным потенциалом:

.

Решение последнего уравнения ищем в виде степеннóй функции

,

для которой надо найти значение показателя степени . После подстановки (6.4) в (6.3) приходим к квадратному уравнению для :

,

два корня которого равны:

.

Таким образом, решением уравнения (6.3) является линейная комбинация

.

Из требования ограниченности волновой функции следует

.

Окончательно:

.

В случае уравнение (6.3) имеет решение

,

что формально не противоречит (6.5).

Итак, формулы (6.2) и (6.5) описывают поведение волновой функции, соответственно, в бесконечно удалённой точке и вблизи начала координат.

Разложение в ряд

Решение для произвольного диапазона радиальной координаты будем искать в виде

,

причём константы и из (6.5) и (6.2) включены в искомую функцию f(r). Её мы представляем в виде ряда

.

Запишем выражение для радиальной функции:

.

Исключим из исходного уравнения (6.1) слагаемое с первой производной. Для этого выполним замену переменной:

.

Функция может быть разложена в ряд аналогично (6.8):

Оператор Лапласа, применённый к функции , содержит только вторую производную:

.

Теперь перепишем уравнение (6.1) в виде:

.

Подставив в него P(r) из (6.10a), получим уравнение для функции :

.

Дважды дифференцируя ряд (6.10b):

и подставляя его в (6.13), получим бесконечную систему уравнений для коэффициентов разложения:

Увеличим на единицу индекс суммирования в первом и последнем членах суммы, после чего вынесем за скобки общий множитель :

Поскольку последнее равенство выполняется при произвольных значениях переменной r, коэффициенты при всех степенях должны быть равны нулю. Отсюда следует рекуррентное соотношение:

.

Задав значение A0, мы можем вычислить коэффициент разложения с любым номером.

Только конечная сумма даёт ограниченное решение

Покажем, что, как и в случае линейного осциллятора (глава 11), условию ограниченности волновой функции удовлетворяет только конечная сумма, но не бесконечный ряд. Для этого достаточно убедиться, что такой ряд растёт быстрее, чем . В самом деле, при неограниченном возрастании номера ν отношение коэффициентов ряда (6.16) стремится к пределу

.

А в разложении экспоненты:

отношение коэффициентов равно

.

Сравнение (6.17) и (6.18) показывает, что в случае бесконечного ряда волновая функция не стремится к нулю при неограниченном удалении от ядра. Физический смысл имеет только решение уравнения (6.13) в виде конечной суммы.

Условие квантования энергии

В конечной сумме существует номер такой, что

Параметр называется радиальным квантовым числом. Он аналогичен введённой в предыдущей главе величине и, как мы увидим ниже, принимает тот же ряд значений (15.1.23). Согласно (6.16) и (6.19), решение существует только в том случае, если k удовлетворяет условию

Таким образом, волновое число электрона квантуется: оно определяется линейной комбинацией

называемой главным квантовым числом. Снова прослеживается аналогия с классической моделью атома: (6.20) получается из (15.1.11) заменой на . Эта замена обусловлена принципиально разной интерпретацией состояний с равным нулю моментом в квантовой теории и классической механике. Выпишем в явной форме правило квантования волнового числа:

.

Из соотношений (2.1) и (6.21) получим условие квантования энергии:

или, вспоминая определение ридберга (13.5.3):

Эта формула даёт собственные значения нашей задачи. Собственные функции (волновые функции) зависят от трёх координат (r, θ, φ) и трёх параметров (n, l, m):

где — угловая часть волновой функции, а — радиальный множитель,равный

Коэффициенты суммы связаны друг с другом рекуррентным соотношением

.

Сумма в (6.24) является знакопеременной. В этом легко убедиться, заметив, что числитель дроби (6.25) имеет отрицательный знак.

К радиальной волновой функции применима осцилляционная теорема, о которой шла речь в разделе 9.3. Число узлов функции равно квантовому числу .

Уточним диапазон изменения квантовых чисел n, и l. Согласно (12.1), параметр l должен быть неотрицательным. Нумерация слагаемых под знаком суммы в (6.24) начинается с нуля, поэтому принимает целые значения:

Энергетический уровень однозначно определяется главным квантовым числом n. Из (6.20) следует, что при заданном значении n орбитальное квантовое число может быть равно одному из чисел ряда:

Если в (6.20) равны нулю оба параметра: и l, — то n равно единице. Остальным парам чисел соответствуют бóльшие значения n. Итак:

Обратим внимание на то, что орбитальное квантовое число выпало из окончательного результата (6.22), хотя в уравнении Шредингера (6.1) оно присутствует. Этот факт является следствием особо высокой степени симметрии кулоновского поля — более высокой, чем просто поле с центральной симметрией. В общем случае центрально-симметричного поля, потенциал которого падает по закону, отличному от , энергия зависит от квантового числа l.

Нормированная волновая функция

Разложение (6.23) волновой функции на множители, каждый из которых зависит либо от радиальной, либо от угловых координат, позволяет разбить общее условие нормировки

на два: по радиальной координате

и по угловым:

.

Для справочных целей выпишем полные выражения для нормированных волновых функций. Сумма в (6.24) с рекуррентным соотношением (6.25) для коэффициентов может быть выражена через так называемую гипергеометрическую функцию. Радиальная часть волновой функции с учётом условия нормировки равна

Здесь Fвырожденная (конфлюэнтная) гипергеометрическая функция (функция Куммера):

,

которая сходится при всех конечных z; параметр α произволен, а β предполагается не равным нулю или целому отрицательному числу. Если α есть целое отрицательное число (или нуль), то F(α, β, z) сводится к полиному степени |α|. Радиальные волновые функции выражаются также через обобщённые полиномы Лагерра :

Угловая часть волновой функции описана в разделе (12.6).

Характеристики

Тип файла
Документ
Размер
452,5 Kb
Тип материала
Высшее учебное заведение

Список файлов лекций

Электронные лекции
Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6363
Авторов
на СтудИзбе
310
Средний доход
с одного платного файла
Обучение Подробнее