лекция-4а (Ю.Л. Словохотов - Кристаллохимия и структурная химия (презентации лекций))

Описание файла

Файл "лекция-4а" внутри архива находится в папке "Ю.Л. Словохотов - Кристаллохимия и структурная химия (презентации лекций)". PDF-файл из архива "Ю.Л. Словохотов - Кристаллохимия и структурная химия (презентации лекций)", который расположен в категории "лекции и семинары". Всё это находится в предмете "кристаллохимия" из седьмого семестра, которые можно найти в файловом архиве МГУ им. Ломоносова. Не смотря на прямую связь этого архива с МГУ им. Ломоносова, его также можно найти и в других разделах. .

Просмотр PDF-файла онлайн

Текст из PDF

ФНМ, весна 2013Кристаллохимия и структурная химияЛекция № 4Система Германа - МогенаIUCr: International Union of CrystallographyМеждународный союз кристаллографовПОЧЕМУ ИМЕЕТСЯ ДВА (И ТОЛЬКО ДВА) ВИДАЗАКРЫТЫХ ОПЕРАЦИЙ СИММЕТРИИВ ТРЕХМЕРНОМ ПРОСТРАНСТВЕ?Как преобразовать пространство:матрицыya11 a12A=a21 a22x0y0матрица 22y0x0вектор на плоскостиa11 a12x0A=a21 a22y0x0a11x0+a12y0=y0a21x0+a22y0xПреобразования симметрии: расстояниямежду точками должны сохранятьсяyA=1 21 −1y0x0A y =01 21 −1x0y0=x0 + 2y0x0 − y0x0x0−y0x0+2y0xне всякая матрица задает преобразование симметрииКакие матрицы для этого подходят?y1 0A1 =0 −1x01 0=A1 y0 −10x0x0=y0−y0матрица А1: отражение относительно оси хxКакие еще матрицы для этого подходят?0A2 =1A2x00=y011010yy0x0=x0y0матрица А2: отражение относительно диагоналиxДетерминант (определитель) матрицыa11 a12deta21 a221 0A1 =0 −1= a11a22 − a12a21A2 =0110det A1 = det A2 = −1это общее свойство всех матриц отраженияМатрицы поворотаy0 1A3 =−1 0x00 1=A3y0−1 0y0x0= −xy00xобщий вид матрицы поворота:A=cos f −sin fsin f cos fdet A = cos2f + sin2f = +1Два вида преобразований симметрии: det A = 1А кроме того,1.

Умножение матриц некоммутативно: АВ ≠ ВАоперации симметрии в общем случаетоже некоммутативны2. E =1001− единичная матрица:АЕ = ЕА для любой Асовсем как тождественное преобразование в группеОперации симметрии в n-мерном пространствеможно задавать матрицами n n, у которых det = 1Симметрические преобразованиятрехмерного пространства: матрицы 3A=cos f −sin f 0sin f cos f 00013det A = (±1)(cos2f+sin2f)= ±1приводятся к этому виду выбором системы координат (x,y,z)Для конечных точечных групп f = 2p/ndet A = +1: собственные вращения Cn(включая тождественное преобразование C1 = e)det A = −1: несобственные вращения Sn(включая отражение S1 = s и инверсию S2= i )Симметрия молекул и конечныхфрагментов кристалла: точечные группысистемаШёнфлисасистемаГермана-МогенасистемаШёнфлисасистемаГермана-МогенаСимметрия кристаллов и бесконечных«структурных мотивов»:пространственные группы.

Свежие статьи
Популярно сейчас