alimov-10-gdz (546276), страница 25

Файл №546276 alimov-10-gdz (Алгебра - 10-11 класс - Алимов) 25 страницаalimov-10-gdz (546276) страница 252015-08-22СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 25)

1) cos2x + cos22x = cos23x + cos24x;(cos2x – cos23x) + (cos22x – cos24x) = 0;(cosx – cos3x)(cosx + cos3x) + (cos2x – cos4x)(cos2x + cos4x) = 0;2sinxsin2x ⋅ 2cosxcos2x + 2sinxsin3x ⋅ 2cosxcos3x = 0;sin2xsin4x + sin2xsin6x = 0;sin2x(sin4x + sin6x) = 0;2sin2x ⋅ sin5xcosx = 0;sin2x = 0 или sin5x = 0 или cosx = 0;πππ2x = πk или 5x = πk или x = + πk , k ∈ Z ; x = k или x = k или225πππx = + πk (входит в первую серию корней), т.е.

x = k или x = k , k ∈ Z ;2252) sin 6 x + cos6 x = 1 ; (sin 2 x + cos 2 x)3 − 3sin 4 x cos 2 x − 3cos 4 x sin 2 x = 1 ;43 231;sin2x=±1;− sin 2 x = −1 − 3sin x cos x(sin x + cos x) =444ππ π2 x = + πk , x = + k , k ∈ Z .24 2cos2x cosxcos 2x12641. 1)+= 1;= a ; a + = 1 ; а –а+1=0; D<0 — решений нет.cosx cos2xcos xa2) sin x + 1 = sin 2 x + 1 ;sinx = a;sin xsin 2 x11a4 – a3 – a + 1 = 0;a3(a – 1) – (a – 1) = 0;a + = a2 + 2 ;aaπ(a3 – 1)(a – 1) = 0; a = 1;sinx = 1;x = + 2πk , k ∈ Z .242222642. 1) sinxsin5x = 1; т.к. |sinx| ≤ 1 и |sin5x| ≤ 1, то |sinxsin5x| ≤ 1, а;sinxsin5x = 1, только если sinx = sin5x = 1 или sinx = sin5x = – 1, т.е.176www.5balls.ruπsin x = 1  х = 2 + 2πk, k ∈ Z;;sin 5x = 1 5x = π + 2πn, n ∈ Z2 x = π + 2πk, k ∈ Zπ2; x = + 2πk , k ∈ Z или22ππ x = + n, n ∈ Z105ππsin x = −1  x = − 2 + 2πk, k ∈ Z  x = − 2 + 2πk, k ∈ Z;;;sin 5x = −1 5x = π + 2πn, n ∈ Z  x = − π + 2π n, n ∈ Z2105ππx = − + 2πk , k ∈ Z , т.е.

x = + πk , k ∈ Z ;222) sinxcos4x = – 1;возможно, лишь при sinx = 1, а cosx = – 1 или при sinx = – 1, а cos4x = 1, т.е. x = π + 2πk,k ∈ Z x = π + 2 πk, k ∈ Z2;— решений нет, или2 4x = π + 2 πn, n ∈ Z  x = π + π n,n ∈ Z4 2 x = − π + 2πk, k ∈ Zπsin x = −1  x = − + 2πk, k ∈ Z 2; ; ; x = − π + 2πk , k ∈ Z .2=cos4x12π 4x = 2πn, n ∈ Z x = n, n ∈ Z2sin x = 1;cos 4x = −15 cos x − cos 2 x = −2 sin x ;643. 1)5 cos x − cos 2 x ≥ 0:sin x ≤ 025 cos x − cos 2 x = 4 sin x5 cos x − cos 2 x ≥ 0;sin x ≤ 0225 cos x − 2 cos x − 1 − 4 + 4 cos x = 05 cos x − cos 2 x ≥ 0; решаем последнее уравнение в системе, полагаяsin x ≤ 022 cos x + 5 cos x − 5 = 0cosx = a;cos x =2a2 + 5a – 5 = 0;a1 =−5 + 65−5 − 65, т.е.,a 2 =44π−5 + 65−5 − 65  x = − 2 + 2πk, k ∈ Z; ;, или cos x −44 x = π n, n ∈ Z2Подставляем в первое неравенство системы:5cosx – 2cos2x – 1 ≥ 0 вместо cosx число65 − 5;4 65 − 5  − 2 ⋅ 90 − 10 65 − 1 = − 74 + 10 65 ≥ 0 , т.е. корни5⋅4164177www.5balls.ru5 cos x − cos 2 x ≥ 0; удовлетворяют первому неравенству системы,sin x ≤ 022 cos x + 5 cos x − 5 = 0из второго неравенстве следует, что х ∈ III, IV четверти, значит,x = − arccos2)65 − 5+ 2πk , k ∈ Z ;4cos x + cos 3x = − 2 cos x ;2 cos x cos 2 x = − 2 cos x ;2cos x(2cos x − 1) = − cos x ;a(2a 2 − 1) = −a ;cosx = a;a ≤ 02, т.е.

а=0 или a = − 1 ;a(2a − 1) ≥ 021a = 0,a = − ,a = 12π2π+ 2πk , k ∈ Z .x = + πk или x = ±23a ≤ 0a ≤ 022;;a(2a − 1) ≥ 0a(2a − 1) ≥ 022 2a(2a − 1) = aa(2a − a − 1) = 0cosx = 0 или cos x = − 1 ;2644. 1) 4|cosx| + 3 = 4sin2x;4|cosx| + 3 = 4 – 4cos2x;cosx = a;4cos2x + 4|cosx| – 1 = 0;4a2 + 4|a| – 1 = 0;a ≥ 0−4+4 2;,−4 − 4 2−4 + 4 2 a =8,a 2 =a1 =88a < 0a < 0т.е. a = − 1 + 2 или ,4−4 24+ 4 2224a 2 − 4a − 1 = 0 a =,a =88a ≥ 0; 24a + 4a − 1 = 0т.е.

a = 1 − 2 т.е. a = ± 1 − 2  ,2222 т.е. cos x = ± 1 − 2  , т.е. x = ± arccos 2 − 1 + 2πk или2x = ± ( π − arccos2) tgx + 1 =22 −1) + 2 πk, k ∈ Z , т.е.21cos2 2xa) |tgx| = tg22x;tgx = t;2 x = ± arccos2 −1+ πk , k ∈ Z ;2;tgx =4tg 2 x2(1 − tg x)2;tgx ≥ 0; t 4 − 2t 2 − 4t + 1 t=0;(1 − t 2 )2 (1 − tg 2 x) 2 − 4tgx tgx =0;(1 − tg 2 x)2t = 0, а второе уравнение (t4 – 2t2 – 4t + 1 = 0) не имеет положительныхкорней, т.е. tgx = 0;x = πk, k ∈ Z;178www.5balls.ru (1 − tg 2 x) 2 + 4tgx tgx  = 0;(1 − tg 2 x) 2б) tgx < 0;tgx = 0 не удовлетворяет требованию tgx < 0 т.е. x = πk, k ∈ Z.cos(x + y ) = 0645.

1) ;cos(x − y ) = 1 x + y = π + πk, k ∈ Z;2 x − y = 2πn, n ∈ Zπ ππ π+ k + πn , k ∈ Z, n ∈ Z ;y = + k − πn , k ∈ Z, n ∈ Z ;4 24 2sin x − sin y = 1222) ;sin x + cos y = 1 только при sinx = ±1 и cosy =sin 2 x + cos2 y = 1x== ±1, но при sinx = – 1 получим siny = – 2 (из первого уравнения), значит,sin x = 1, а cos y = ±1 и sin y = = 0 (из первого уравнения), т.е.x=π+ 2πk , k ∈ Z , а y = πn, n ∈ Z.2646.

4 – 4cos2x + 2(a – 3)cos x + 3a – 4 = 0;cos x = b;4b2 – 2(a – 3)b – 3a = 0.4cos2x – 2(a – 3)cos x – 3a = 0;Уравнение имеет действительные корни, если D ≥ 0;D = 4(a – 3)2 + 16 ⋅ 3a = 4(a + 3)2 ≥ 0 при любом а.;2(a − 3) − 2(a + 3)и b 2 = 2(a − 3) + 2(a + 3) .883Для любых а один из b = − , другой b = a .223Уравнение cos x = − не имеет корней, а уравнение cos x = a — имеет22b1 =корни, только если |a| ≤ 2.Т.е. исходное уравнение имеет корни x = ± arccos a + 2πk , k ∈ Z , только2если – 2 ≤ а ≤ 2.647. (1 – a)sin2x – sin x cos x – (2 + a)cos2x = 0 |: cos2x;(1 – a)tg2x – tg x – (2 + a) = 0;tg x = b; (1 – a)b2 – b – (2 + a) = 0.Уравнение не имеет решений, если D < 0;D = 1 + 4(2 + a)(1 – a) < 0;1 + 8 – 4a – 4a2 < 0; 4a2 + 4a – 9 > 0, ;т.е.

− 1 − 1 10 > a или − 1 + 1 10 < a .2222Значит, исходное уравнение не имеет корней приa<−10 + 1или при a > 10 − 1 .22648. 1) cos x ≥ 2 ;22) cos x < 3 ;2−ππ+ 2πk ≤ x ≤ + 2πk , k ∈ Z ;44π11π+ 2πk < x <+ 2πk , k ∈ Z ;66179www.5balls.ru5π5π+ 2πk < x <+ 2πk , k ∈ Z ;663) cos x > − 3 ;−4) cos x ≤ − 2 ;3π5π+ 2πk ≤ x ≤+ 2πk , k ∈ Z .44222) cos x < – 1 — решений нет;649. 1) cos x ≤ 3 — x ∈ R;3) cos x ≥ 1 — выполняется только при cos x = 1, т.е.

x = 2πk, k ∈ Z;4) cos x ≤ – 1 — выполняется только при cos x = – 1, т.е.x=π+2πk, k ∈ Z.π5π+ 2πk < x <+ 2πk , k ∈ Z ;66650. 1) sin x > 1 ;22) sin x ≤ 2 ;−π5π+ 2πk ≤ x ≤ + 2πk , k ∈ Z ;443) sin x ≤ − 2 ;−π3π+ 2πk ≤ x ≤ − + 2πk , k ∈ Z ;444) sin x > − 3 ;−π4π+ 2πk ≤+ 2πk , k ∈ Z .33222651. 1) sin x ≥ − 2 – x ∈ R;2) sin x > 1 — нет решений;3) sin x ≤ – 1 — выполняется только при sin x = – 1; x = − π + 2πk , k ∈ Z ;2π4) sin x ≥ 1 — выполняется только при sin x = 1; x = + 2πk , k ∈ Z .2652. 1)2 cos 2 x ≤ 1 ; cos 2 x ≤ 2 ; π + 2πk ≤ 2 x ≤ 7 π + 2πk ;442π7π+ πk ≤ x ≤+ πk , k ∈ Z ;882) 2sin3x > – 1; sin 3x > − 1 ; − π + 2πk < 3x < 7 π + 2πk ;662π 2π7 π 2π− ++k<x<k, k ∈ Z ;18 31833) sin(x + π ) ≤ 2 ; − 5π + 2πk ≤ x + π ≤ π + 2πk ; − 3π + 2πk ≤ x ≤ 2πk , k ∈ Z ;4424424) cos(x − π ) ≥ 3 ; − π + 2πk ≤ x − π ≤ π + 2πk ; 2πk ≤ x ≤ π + 2πk , k ∈ Z .66 6623x1ππx653.

1) cos( + 2) ≥ ; − + 2πk ≤ + 2 ≤ + 2πk ;33332πx π;–π–6+6πk≤ x ≤ π – 6 + 6πk, k ∈ Z;− − 2 + 2πk ≤ ≤ − 2 + 2πk33 32) sin x − 3  < − 2 ;4−2−π3πx+ 2πk < − 3 < − + 2πk ;444π3πx+ 3 + 2πk < < − + 3 + 2πk ; – 3π + 12 + 8πk < x < – π + 12 + 8πk, k∈Z.444180www.5balls.ru654. 1) sin2x + 2sin x > 0;sin x(sin x + 2) > 0;sin x + 2 > 0 для всех x ∈ R, т.е. sin x > 0; 2πk < x < π + 2πk, k ∈ Z;2) cos2x – cos x < 0; cos x(cos x – 1) < 0; cos x – 1 ≤ 0 для всех x ∈ R,cos x > 0т.е. cos x − 1 ≠ 0; − π + 2πk < x < 2πk , k ∈ Z и 2πn < x < π + 2πn , n ∈ Z .22655. 1) 2 arcsin 3 + 3 arcsin − 1  = 2 ⋅ π + 3 ⋅ 2π = 8π ;23 2πππ72) arcsin;− 4 arcsin 1 = − 4 ⋅ = −42423313) arccos − 1  − arcsin 3 = 2π − π = π ; 223334) arccos(− 1) − arcsin (− 1) = π −  − π  = 3π ; 2 25) 2arctg1 + 3arctg − 1  = 2 ⋅ π + 3 − π  = 0 ;34 66) 4arctg(− 1) + 3arctg 3 = 4 ⋅  − π  + 3 ⋅ π = 0 . 4656.

1) cos(4 − 2x ) = − 1 ;22π;+ 2 πk2x = 4 ±32) cos(6 + 3x ) = − 2 ;23x = ±3π− 6 + 2πk ;434 − 2x = ±x = 2±2π+ 2πk ;3π+ πk , k ∈ Z ;33π+ 2πk ;4π2πx = ± −2+k, k ∈ Z ;436 + 3x = ±ππ2;2 cos(2x + ) + 1 = 0 ;cos(2x + ) = −424ππ3π+ 2πk , k ∈ Z ;2x + = ±2 x = + 2πk или 2x = – π + 2πk, k ∈ Z;442ππx = + πk или x = − + πk , k ∈ Z ;423)πππ3;− 3x = ± + 2πk , k ∈ Z ;cos( − 3x) =36332π 2ππ ππ 2π;илиx= +k, k ∈ Z .3x = + + 2πk , k ∈ Zx= +k3 62 36 3π1657.

1) 2sin(3x − π ) + 1 = 0 ;sin(3x − ) = − ;442πππ πk +1 π+k1+ πk ;3x − = (− 1)++ k, k ∈ Z ;x = (− 1)18 12 3464) 2cos( π − 3x) − 3 = 0 ;181www.5balls.rux πsin  +  = 1 ;2 3πx πx = + 4πk , k ∈ Z ;= + 2 πk ;2 633sin (2 x + 1) = − ;43 1 πk +1 1x = (− 1)arcsin − + k , k ∈ Z ;24 2 22sin (2 x − 1) = ;52 1 πk 1x = (− 1) arcsin + + k , k ∈ Z .25 2 22) 1 − sin  x + π  = 0 ;2 3x π π+ = + 2πk ;2 3 23) 3 + 4sin(2x + 1) = 0;2 x + 1 = (− 1)k +1 arcsin3+ πk ;44) 5sin(2x – 1) – 2 = 0;2 x − 1 = (− 1)k arcsin2+ πk5658.

1) (1 + 2 cos x)(1 − 4sin x cos x) = 0 ;(1 + 2 cos x)(1 − 2sin 2x) = 0 ;2или sin 2 x = 1 ; x = ± 3π + 2πk или 2 x = (− 1)k π + πk , k ∈ Z ;cos x = −2246π π3πk+ 2πk или x = (− 1)+ k, k ∈ Z ;x=±412 22) (1 − 2 cos x)(1 + 2sin 2x cos 2x) = 0 ;(1 − 2 cos x)(1 + sin 4x) = 0 ;2ππили sin4x = – 1;x = ± + 2πk или 4 x = − + 2πk , k ∈ Z ;242ππ πили.x = ± + 2πkx = − + k, k ∈ Z48 2π659. 1) tg(2x + ) = −1 ; 2 x + π = − π + πk ; x = − π + π k , k ∈ Z ;4444 25π ππ π5ππ12) tg(3x − ) =; 3x − = + πk ; 3x =+ πk ; x =+ k, k ∈ Z ;4 61236 3433) 3 − tg(x − π ) = 0 ; tg(x − π ) = 3 ; x − π = π + πk ; x = 8π + πk , k ∈ Z ;555 315πππ π3π4) 1 − tg(x + ) = 0 ; tg(x + ) = 1 ; x + = + πk ; x =+ πk , k ∈ Z .28777 4cos x =660. 1) 2sin2x + sin x = 0;sin x(2sin x + 1) = 0;x = πk или x = (− 1)k +1 π + πk , k ∈ Z .sin x = 0 или sin x = − 1 ;22) 3sin2x – 5sin x – 2 = 0;1a1 = − , a2 = 2;3x = (− 1)k +1 arcsin6sin x = a;sin x = −3a2 – 5a – 2 = 0;1или sin x = 2;31+ πk , k ∈ Z , а во втором случае решений нет.33) cos2x – 2cos x = 0; cos x(cos x – 2) = 0; cos x = 0 или cos x = 2;πx = + πk , k ∈ Z , а во втором случае решений нет.24) 6cos2x + 7cos x – 3 = 0;cos x = a;6a2 + 7a – 3 = 0;182www.5balls.ru1331cos x = − или cos x = ;a1 = − ,a 2 = ;32231x = ± arccos + 2πk , k ∈ Z , а в первом случае решений нет.3183www.5balls.ru661.

1) 6sin2x – cos x + 6 = 0;6cos2x + cos x – 12 = 0;6(1 – cos2x) – cos x + 6 = 0;cos x = a; 6a2 + a – 12 = 0; a1 = − 3 ,a 2 = 4 ;2343— в обоих случаях решений нет.cos x = − или cos x =232) 8cos2x – 12sin x + 7 = 0;8(1 – sin2x) – 12sin x + 7 = 0;8sin2x + 12sin x – 15 = 0; sin x = a;8a2 + 12a – 15 = 0;a=− 12 − 4 39− 12 + 4 39, т.е. sin x = − 3 − 39 или sin x =,a =16164x = (− 1)k arcsin39 − 3;439 − 3+ πk , k ∈ Z , а в первом случае решений нет.4662. 1) tg2x + 3tg x = 0; tg x(tg x + 3) = 0;tg x = 0 или tg x = –3; x = πk или x = –arctg3 + πk, k ∈ Z;2) 2tg2x – tg x – 3 = 0;tg x = a;2a2 – a – 3 = 0;33a1 = –1, a 2 = ;tg x = –1 или tgx = ;22x=−π3+ πk или x = arctg + πk , k ∈ Z ;423) tg x – 12ctg x + 1 = 0 | ⋅ tg x; tg2x – 12 + tg x = 0; tg x = a;a2 + a – 12 = 0;a1 = –4, a2 = 3; tg x = –4 или tg x = 3;x = –arctg4 + πk или x = arctg3 + πk, k ∈ Z;4) tg x + ctg x = 2 |⋅tg x; tg2x – 2tg x + 1 = 0; (tg x – 1)2 = 0; tg x = 1;x=π+ πk , k ∈ Z ;4663.

Характеристики

Тип файла
PDF-файл
Размер
2,14 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов книги

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6458
Авторов
на СтудИзбе
305
Средний доход
с одного платного файла
Обучение Подробнее