alimov-10-gdz (546276), страница 23
Текст из файла (страница 23)
Пусть arcsin(sinα)=β, тогда sin α =sinβ и − π ≤ β ≤ π и − π ≤ α ≤ π ,2222т.е. α=β. Значит, arcsin(sinα) = α, ч.т.д.ππ112) 4arcsin(sin ) = 4 ⋅ = 2 ;1) 7 arcsin(sin ) = 7 ⋅ = π ;7722ππ6π3) arcsin(sin ) = arcsin(sin ) = ;7774) arcsin(sin5) = arcsin(sin(5 – 2π) = 5 – 2π.601. 1) cos(arcsin 3 ) = 1 − sin 2 (arcsin 3 ) = 1 − 9 = 4 ;552552) cos arcsin − 4 = 1 − sin 2 arcsin − 4 = 1 − 16 = 3 ;25 5 5 5 3) cos arcsin − 1 = 1 − sin 2 arcsin − 1 = 1 − 1 = 2 2 ; 3 3 93163www.5balls.ru4) cos(arcsin 1 ) = 1 − sin 2 (arcsin 1 ) = 1 − 1 = 15 .44164602. 1) sin(arccos 2 ) = 1 − cos2 (arccos 2 ) = 1 − 4 = 5 ;33932) sin arccos − 1 = 1 − cos 2 arccos − 1 = 1 − 1 = 3 . 2 2 42603. 1) sin(arcsin 1 + arccos 2 2 ) = sin(arcsin 1 ) ⋅ cos(arccos 2 2 ) +33332 212 2 1+ sin(arccos) ⋅ cos(arcsin ) =⋅ +333 32 2 1 1 2 2 4 22 21;⋅ + ⋅=) ⋅ 1 − sin 2 (arcsin ) =3 3 3 3923343432) cos(arcsin + arccos ) = cos(arcsin ) ⋅ cos(arccos ) − sin(arcsin ) ⋅55555+ 1 − cos 2 (arccos44334⋅ sin(arccos ) =1 − sin 2 (arcsin ) − 1 − cos 2 (arccos ) =5 5555 −1 ≤ x − 3 ≤ 1 2 ≤ x ≤ 42604.
1) arcsin( x − 3) = π ; ; 2;26 xπx = 3+ 1− 3 = sin22622) arcsin(3 − 2x) = −4 4 3 3 7.⋅ − ⋅ =5 5 5 5 254 ≤ x ≤ 8. Ответ: х = 7.x = 7π;4−1 ≤ 3 − 2x ≤ 1−4 ≤ −2x ≤ −2;π ; 23 − 2x = sin − 4 2x = 3 + 2605. Т.к. 0≤а≤1, то arcsin a ∈ 0; π 2( )1 ≤ x ≤ 2.6+ 2 x = 4Ответ: x =6+ 2.4и 2arcsina=[0; π], и arccos(1 − 2a 2 ) ∈ [0; π] ;cos(2arcsina) = 1 – 2sin2(arcsina) = 1 – 2a2 = cos(arccos(1 – 2a2)), т.е.2arcsina = arccos(1 – 2a2), ч.т.д.606. 1) sinx = 0,65x = ( – 1)karcsin0,65 + πk, k ∈ Z, с помощьюмикрокалькулятора находим arcsin0,65.2) sinx = – 0,31x = ( – 1)k + 1arcsin0,31 + πk, k ∈ Z, с помощью микрокалькулятора находим arcsin0,31.607. 1) arctg0 = 0; 2) arctg (− 1) = − π ; 3) arctg − 3 = − π ; 4) arctg 3 = π .43 6608.
1) 6arctg 3 − 4 arcsin − 1 = 6 ⋅ π − 4 ⋅ − π = 2π + π = 3π ;23 42) 2arctg1 +3 arcsin − 1 = 2 ⋅ π + 3 ⋅ − π = π − π = 0 ; 24 622164www.5balls.ru3( )3) 5arctg − 3 − 3 arccos − 2 = 5 ⋅ − π − 3 ⋅ 3π = − 5π − 9π = − 47 π .2 3 4 3412609. 1) arctg( – 1) и arcsin − 3 ; arctg(− 1) = − π > − π = arcsin − 3 ,2 432 т.е. arctg(− 1) > arcsin − 3 ;2 111π; arctg 3 = = arccos , т.е. arctg 3 = arccos ;22233) arctg( – 3) и arctg2; arctg( – 3) < 0 < arctg2, т.е.
arctg( – 3) < arctg2;4) arctg( – 5) и arctg0; arctg( – 5) < 0 < arctg0, т.е. arctg( – 5) < arctg0.11π;x = arctg+ πk ;610. 1) tgx =x = + πk , k ∈ Z ;6332) arctg 3 и arccos2) tgx = 3 ;x = arctg 3 + πk ;3) tgx = − 3 ;x = arctg(− 3) + πk ;4) tgx = – 1;x = atctg(– 1) + πk;5) tgx = 4;6) tgx = – 5;x = arctg4 + πk, k ∈ Z;x = arctg(– 5) + πk;π+ πk , k ∈ Z ;3πx = − + πk , k ∈ Z ;3πx = − + πk , k ∈ Z ;4x=x = – arctg5 + πk, k ∈ Z.πx = k, k ∈ Z ;611.
1) tg3x = 0;3x = πk;3xxxπ3π2) 1 + tg = 0 ; tg = −1 ;= − + πk ; x = −+ 3πk , k ∈ Z ;33344xxxπ3) 3 + tg = 0 ; tg = − 3 ; = − + πk ; x = – 2π + 6πk, k ∈ Z.6663612. 1) (tgx − 1)(tgx + 3) = 0 ;tgx = 1 или tgx = − 3 ;x=ππ+ πk или x = − + πk , k ∈ Z ;432) ( 3tgx + 1)(tgx − 3) = 0 ;1ππtgx = −или tgx = 3 ; x = − + πk или x = + πk , k ∈ Z ;6333) (tgx – 2)(2cosx – 1) = 0;1πx = arctg2 + πk или x = ± + 2πk , k ∈ Z ;tgx = 2 или cos x = ;234) (tgx – 4,5)(1 + 2sinx) = 0;1πtgx = 4,5 или sin x = − ; x = arctg4,5 + πk или x = (− 1)k +1 + πk , k ∈ Z ;26165www.5balls.rux− 1) = 0 ;2xtgx = – 4 или tg = 1 ;25) (tgx + 4)(tgx = – arctg4 + πk или x =x = – arctg4 + πk илиx π= + πk , k ∈ Z , т.е.2 4π+ 2πk , k ∈ Z ;2πПоследняя серия корней не подходит, т.к.
tg( + 2πk) — не существу2ет, т.е. x = – arctg4 + πk, k ∈ Z;xx6) ( tg + 1)( tgx − 1) = 0; tg = −1 или tgx = 1;66хππ= − + πk или x = + πk, k ∈ Z ;644π−3πx=+ 6π или x = + πk, k ∈ Z . Первая серия корней не подходит,42π3πт.к. tg (− + 6πk) — не существует, значит, х = + πk, k ∈ Z .24613. tgx =3;3x=π+ πk , k ∈ Z ;6Наименьший положительный корень x 1 = π , а наибольший отрицатель6ный x 2 = − 5π .6614. 1) arctg(5x − 1) =π;45x − 1 = tgπ;45х = 2;x=2;53+ 3 π.5x = 3 + 3 ; x =3 − 5x = tg − ;53615. Пусть arctga=α, тогда − π < α < π и tgα=a, т.е. tg(arctga)=tgα=a, ч.т.д.222) arctg(3 − 5x ) = −π;31) tg(arctg2,1) = 2,1;2) tg(arctg( – 0,3)) = – 0,3;3) tg(π – arctg7) = – tg(arctg7) = – 7; 4) ctg( π + arctg6) = − tg(arctg6) = −6 .2616.
Пусть arctg(tgα) = β, тогда − π < α < π ;− π < β < π и tgβ = tgα, зна2222чит, α = β, т.е. arctg(tgα) = α, ч.т.д.1) 3arctg(tg π ) = 3 ⋅ π = 3π ;3) arctg tg 7 π = arctg tg − π = − π ;2) 4arctg(tg0,5) = 4 ⋅ 0,5 = 2;4) arctg(tg13) = arctg(tg(13 – 4π))=13 – 4π.7778 166www.5balls.ru 8 8617. 1) arctg ctg 5π = arctg tg − π = − π ; 3 2) arctg(ctg 3π ) = arctg(− tg π ) = − π ;4446 33) arctg(2sin 5π) = arctg(2 ⋅ 1 ) = arctg1 = π ;6244) arctg(2sin π) = arctg(2 ⋅ 3 ) = arctg 3 = π323618. Т.к. arctga ∈ − π ; π , то cos (arctga ) = 2 211 + tg 2 (arctga)=11 + a2=11 + a2,ч.т.д.619. 1) tgx = 9; x = arctg9 + πk, k ∈ Z, с помощью микрокалькулятора находим arctg9;2) tgx = – 7,8; x = – arctg7,8 + πk, k ∈ Z, с помощью микрокалькуляторанаходим arctg7,8.11π1620.
1) sin 2 x = ; sin x = или sin x = − ; x = (− 1)k + πk или4226πk +1 πx = (− 1)+ πk , k ∈ Z ; обобщая, получаем x = ± + πk , k ∈ Z ;66111π; x = ± + 2πk или2) cos 2 x = ; cos x =или cos x = −24223ππ π+ 2πk , k ∈ Z ; обобщая, получаем x = + k , k ∈ Z ;44 213) 2sin2x + sinx – 1 = 0; sinx = a; 2a2 + a – 1 = 0; a1 = – 1, a 2 = ;2x=±sinx = – 1 или sin x = 1 ; x = − π + 2πk или x = (− 1)k π + πk , k ∈ Z ;2264) 2cos2x + cosx – 6 = 0; cosx = a; 2a2 + a – 6 = 0; a1 = – 4, a 2 =3;23; уравнения решений не имеют.22621.
1) 2cos x – sinx + 1 = 0;2(1 – sin2x) – sinx + 1 = 0;332sin2x + sinx – 3 = 0; sinx = a; 2a2 + a – 3 = 0; a = − , a = 1; sin x = − ,22πsinx = 1 или x = + 2πk , k ∈ Z ; первое уравнение решений не имеет.23(1 – sin2x) – sinx – 1 = 0;2) 3cos2x – sinx – 1 = 0;23sin2x + sinx – 2 = 0;sinx = a; 3a2 + a – 2 = 0;a1 = – 1, a 2 = ;32π2sinx = – 1 или sin x = ; x = − + 2πk или x = (− 1)k arcsin + πk, k ∈ Z .3234(1 – cos2x) – cosx – 1 = 0;3) 4sin2x – cosx – 1 = 0;cosx = – 4 или cos x =167www.5balls.ru4cos2x – cosx – 3 = 0;cosx = a;4a2 + a – 3 = 0;a1 = – 1, a 2 =3;433;x = π + 2πk или x = ± arccos + 2πk , k ∈ Z .444) 2sin2x + 3cosx = 0; 2(1 – cos2x) + 3cosx = 0; 2cos2x + 3cosx – 2 = 0;11cosx = a; 2a2 – 3a – 2 = 0; a1 = − , a2 = 2; cos x = − или cosx = 2;222πx=±+ 2πk , k ∈ Z ; второе уравнение корней не имеет.3622.
1) tg2x = 2 tgx = ±2 x = ±arctg2 + πk, k ∈ Z;π2) tgx = ctgx tg2x = 1 tgx = ±1 x = ± + πk , k ∈ Z ;4tgx = a a2 – 3a – 4 = 0a1 = – 1, a2 = 4;3)tg2x – 3tgx – 4 = 0πtgx = – 1 или tgx = 4; x = − + πk или x = arctg4 + πk, k ∈ Z.44) tg2x – tgx + 1 = 0tgx = a a2 – a + 1 = 0D < 0, решений нет.623. 1) 1 + 7cos2x = 3sin2x;tg2x – 6tgx + 8 = 0;sin2x + 8cos2x – 6sinxcosx = 0 | : cos2x;2tgx = a;a – 6a + 8 = 0;a1 = 2, a2 = 4;tgx = 2 или tgx = 4;x = arctg2 + πk или x = arctg4 + πk, k ∈ Z.2) cos2x + cos2x + sinscosx = 0;tg2x – tgx – 2 = 0;2cos2x – sin2x + sinxcosx = 0 | : cos2x;212tgx = a;a – a – 2 = 0;a = 2, a = – 1; tgx = – 1 или tgx = 2;cosx = – 1 или cos x =x=−π+ πk или x = arcrtg2 + πk, k ∈ Z.43) 3 + sin2x = 4sin2x;sin2x – 2sinxcosx – 3cos2x = 0 | : cos2x;tg2x – 2tgx – 3 = 0;2a1 = – 1, a2 = 3; tgx = – 1 или tgx = 3;tgx = a;a – 2a – 3 = 0;πx = − + πk или x = arctg3 + πk, k ∈ Z.44) 3cos2x + sin2x + 5sinxcosx = 0;2tg2x – 5tgx – 3 = 0;3cos2x – 2sin2x + 5sinxcosx = 0 | : cos2x;11a1 = − , a2 = 3; tgx = − или tgx = 3;tgx = a;2a2 – 5a – 3 = 0;22x = −arctg1+ πk или x = arctg3 + πk, k ∈ Z.2624.
1) 3 cos x + sin x = 0 |:cosx;πx = − + πk , k ∈ Z ;32) cosx = sinx |:cosx;tgx = 1;3 + tgx = 0 ;x=π+ πk , k ∈ Z ;4168www.5balls.rutgx = − 3 ;tgx = 2; x = arctg2 + πk, k ∈ Z;14) 2sinx + cosx = 0 |:cosx;2tgx + 1 = 0; tgx = − ;21x = −arctg + πk , k ∈ Z .23) sinx = 2cosx |:cosx;222;−cos x =222625.