лк13 (1172702)

Файл №1172702 лк13 (Лекции Евграфова, Петрова)лк13 (1172702)2020-05-12СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

А.Н.Евграфов, Г.Н.Петров. Теория механизмов и машин. Лекция 13.

7. Свойства эвольвенты окружности и эвольвентного зацепления

В
качестве главного профиля зубьев цилиндрических зубчатых колес, применяемых в машиностроении, наибольшее распространение получил эвольвентный профиль. Плоская эвольвента окружности представляет собой траекторию любой точки прямой линии, перекатываемой без скольжения по эволюте, т.е. по основной окружности радиуса rb (рис. 3.41). Перекатываемая по основной окружности прямая называется производящей прямой. Рассмотрим более подробно свойства эвольвенты окружности.

  1. Нормаль к эвольвентам (прямая КС) касается основной окружности, причем точка касания (С) является центром кривизны эвольвент.

  2. Все эвольвенты одной основной окружности эквидистантны, и расстояние KD между ними равно длине дуги К0D0.

  3. Каждая ветвь эвольвенты вполне определяется радиусам основной окружности и положением начала отсчета эвольвентного угла.

  4. Эвольвента не имеет точек внутри основной окружности.

Из свойств эвольвенты вытекают свойства эвольвентного зацепления. Пусть профиль зуба колеса 1 (рис. 3.42) очерчен по эольвенте основной окружности с радиусом rb1, а профиль зуба колеса 2 – по эвольвенте основной окружности радиуса rb2. Поместим центры этих окружностей в центры вращения 01 и 02. Нормаль к эвольвенте первого колеса должна быть касательной к основной окружности первого колеса, а нормаль к эвольвенте второго колеса должна быть касательной к основной окружности второго колеса. В точке касания эвольвент нормаль должна быть общей к обоим профилям, и, следовательно, точка контакта лежит на общей касательной к основным окружностям. При вращении ведущего колеса 1 против часовой стрелки, а ведомого колеса 2 – по часовой (рис. 3.42, а) точка касания эвольвент перемещается по отрезку В1В2 этой касательной, т.к. вне отрезка В1В2 эвольвенты не могут касаться, т.е. иметь общую нормаль; В1В2 является линией зацепления.

Точка пересечения общей нормали к эвольвентам с линией межосевого расстояния 0102 является полюсом зацепления Р и занимает неизменное положение.

Если направление вращение ведущего колеса 1 и ведомого колеса 2 изменится, то линия зацепления В1В2, по которой перемещается точка контакта, займет новой положение (рис. 3.42, б).

У
гол между линией зацепления В1В2 и прямой, перпендикулярной линии межосевого расстояния, называется углом зацепления и обозначается через w. Углы РВ101 и РВ202 равны углу зацепления w как углы с соответственно перпендикулярными сторонами. Поскольку Р01 = rw1, а Р02 = rw2, то

(3.87)

Следовательно, при эвольвентном зацеплении передаточное отношение может быть выражено через отношение радиусов основных окружностей:

(3.88)

причем знак плюс относится к внутреннему зацеплению, а знак минус – к внешнему.

Из формулы (3.88) видно, что при эвольвентном зацеплении изменение межосевого расстояния не влияет на значение передаточного отношения вследствие неизменности радиусов основных окружностей. При изменении межосевого расстояния изменяются лишь радиусы начальных окружностей и угол зацепления.

С
войства эвольвентного зацепления иллюстрирует аналогия с перекрестно-ременной передачей (рис. 3.43). Линия зацепления как бы сматывается с ведущего шкива 1 радиуса rb1 и наматывается на шкив 2 радиуса rb2. (ветвь I при вращении ведущего шкива 1 против часовой стрелки и ветвь II при вращении шкива 1 по часовой стрелке. При изменении межосевого расстояния 0102 передаточное отношение, обратно пропорциональное отношению радиусов шкивов rb2 и rb1, не изменяется.

8. Теоретический и производящий исходные контуры

Геометрия зубчатого колеса зависит в первую очередь от размеров и формы инструмента. Поэтому стандартизация параметров инструмента, воспроизводящего эвольвентный профиль зубчатого колеса, необходима с технической и экономической точек зрения. За основу стандарта форм и размеров зубчатого колеса принят теоретический исходный контур (ТИК, рис. 3.44), который представляет собой чередующиеся симметричные зубья и впадины трапециевидной формы. Размеры теоретического исходного контура установлены государственным стандартом. Базовая линия теоретического исходного контура, по которой толщина зуба равна ширине впадины, называется его делительной прямой. Расстояние между одноименными профилями соседних зубьев по делительной или по любой другой параллельной ей прямой называют шагом зубьев р исходного контура.



Если форма инструмента повторяет форму ТИК, а делительная прямая является начальной прямой, то начальная окружность нарезаемого колеса касается делительной прямой ТИК. Как уже отмечалось ранее, подвижные центроиды катятся друг по другу без скольжения, поэтому шаг зубьев по начальной окружности колеса должен быть равен шагу зубьев ТИК. Если z – число зубьев нарезаемого колеса, то длина окружности – подвижной центроиды колеса равна:

, (3.89)

где d – диаметр подвижной центроиды колеса:

. (3.90)

Подвижную центроиду колеса при его зацеплении с рейкой называют делительной окружностью. Делительная окружность делит зуб на делительную головку и делительную ножку. В выражении (3.90) введен основной параметр зубчатого зацепления – модуль m:

(3.91)

Модуль измеряется в миллиметрах и может принимать только значения, оговоренные государственным стандартом. В долях модуля задаются все линейные размеры контура: высота делительной головки

, (3.92)

высота делительной ножки

, (3.93)

радиус переходной кривой

, (3.94)

где - коэффициент высоты головки; с* - коэффициент радиального зазора; - коэффициент радиуса переходной кривой.

Угол  между главным профилем зуба (прямая линия бокового профиля зуба является вырожденной эвольвентой окружности при rb  ) и осью симметрии зуба называется углом профиля исходного контура. Государственный стандарт устанавливает следующие значения параметров исходного контура:

с* = 0,25; = 0,384;  = 200.

Исходным производящим контуром называется такой, который заполняет впадины теоретического исходного контура, как отливка заполняет форму (рис. 3.44, ИПК). При этом между прямой вершин теоретического исходного контура и прямой впадин исходного производящего контура сохраняется радиальный зазор с*m. Это делается для того, чтобы поверхность впадин инструмента, образованного на базе исходного производящего контура, не участвовала в процессе нарезания зубьев.

Если рассмотренный исходный производящий контур двигать вдоль линий зубьев, перпендикулярных его плоскости, им будут описаны поверхности исходной производящей зубчатой рейки (ее иногда называют инструментальной), прямозубой или косозубой, в зависимости от равного или не равного нулю угла наклона линий ее зубьев. В соответствии с этим такой контур можно было бы определить как сечение рейки плоскостью, перпендикулярной линиям ее зубьев (нормальный контур).

9. Геометро-кинематические условия существования эвольвентного зацепления

  1. Основная теорема зацепления применительно к эвольвентному зацеплению записывается так:

(3.95)

где rw1, rw2, rb1, rb2 – радиусы начальных и основных окружностей.

  1. Полный коэффициент перекрытия  является суммой торцового коэффициента перекрытия и осевого коэффициента перекрытия , т.е.

=  +  . (3.96)

Значение торцового коэффициента перекрытия может быть вычислено как отношение длины активной линии зацепления g к шагу эвольвентного зацепления р:

. (3.97)

А
ктивная линия зацепления
– участок линии зацепления, в точках которого последовательно соприкасаются взаимодействующие профили зубьев. При отсутствии подрезания этот участок заключен между точками Н1 и Н2 (рис. 3.45). Шагом зацепления р называется расстояние по контактной нормали (нормаль к главным профилям в точке их касания) между двумя контактными точками одноименных главных профилей соседних зубьев:

р = mcos. (3.98)

Длина активной линии зацепления g:

Здесь радиус основной окружности rb получен из прямоугольного треугольника (рис. 3.46), где гипотенуза – радиус делительной окружности (r = mz/2), а прилежащий катет – радиус основной окружности:


. (3.99)

Окончательно

. (3.100)

Подставляя (3.98) и (3.100) в (3.97), получаем выражение для вычисления коэффициента торцового перекрытия:

Характеристики

Тип файла
Документ
Размер
238,5 Kb
Тип материала
Высшее учебное заведение

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов лекций

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6366
Авторов
на СтудИзбе
310
Средний доход
с одного платного файла
Обучение Подробнее