GL_05_Алкены (1125813), страница 7
Текст из файла (страница 7)
Этот метод в лаборатории нашел ограниченную область применения только для получения третичных спиртов:
Гидратация простейших алкенов – этилена и пропилена – представляет собой важный промышленный метод получения этилового и изопропилового спиртов (гл. 28):
В лабораторной практике прямая гидратация алкенов не нашла широкого применения как вследствие жестких условий, так и благодаря образованию значительного количества изомерных спиртов. В настоящее время для региоселективного получения спиртов из алкенов обычно используется родственная реакция оксимеркурирования – демеркурирования.
5.4.3.е. ОКСИМЕРКУРИРОВАНИЕ – ДЕМЕРКУРИРОВАНИЕ
Электрофильная атака на двойную связь алкена может осуществляться ионами металлов, среди которых особое положение занимает катион ртути (II). Ацетат ртути в очень мягких условиях при 20ºС присоединяется к алкенам в водном тетрагидрофуране (ТГФ) или в водной уксусной кислоте с образованием ртутьорганических соединений. Присоединение ацетата ртути по двойной связи протекает региоселективно или региоспецифично в строгом соответствии с правилом Марковникова, т.е. катион присоединяется к наименее замещенному атому углерода:
Алкены-1 более реакционноспособны по отношению к ацетату ртути по сравнению с алкенами, в которых двойная связь находится внутри углеродной цепи. Связь C – Hg в ртутьорганических соединениях может быть легко расщеплена под действием боргидрида натрия NaBH4 с образованием ртути и новой связи C – H. Предполагается, что в качестве нестабильного интермедиата при этом получается алкилмеркургидрид, который далее разлагается с выделением металлической ртути по радикальному механизму:
Суммарно двухстадийный процесс оксимеркурирования – демеркурирования в конечном итоге представляет собой региоспецифичную гидратацию алкена по правилу Марковникова в исключительно мягких условиях, когда образование побочных продуктов сведено к предельно возможному минимуму. Это можно наглядно проиллюстрировать с помощью следующих примеров, в которых общий абсолютный выход продуктов реакции составляет 90 – 98%, и где приведенные выходы указывают только на соотношение продуктов:
Мостиковый меркуриниевый ион можно зафиксировать в ненуклеофильной сильнокислой среде даже при 20ºС при присоединении более сильного электрофильного агента – трифторацетата ртути в смеси фторсульфоновой кислоты и пятифтористой сурьмы:
Меркуриниевый катион может расщепляться при действии не только воды, но и других электронодонорных растворителей: спиртов, уксусной кислоты, ацетонитрила и др. Конечными продуктами реакций в этом случае будут соответственно простые эфиры, ацетаты и N-замещенные амиды уксусной кислоты, например:
Как видно из приведенных выше примеров, оксимеркурирование – демеркурирование алкенов в большинстве случаев обеспечивает региоспецифическую гидратацию алкенов с образованием практически только одного из двух изомерных спиртов. Следует отметить, что нет никакой необходимости в выделении ртутьорганического соединения и оба процесса могут быть проведены непосредственно один за другим.
Оксимеркурирование алкенов, по-видимому, начинается с атаки катиона AcOHg+ и образования в качестве интермедиата циклического меркуриниевого катиона (аналога галогенониевого иона), который затем раскрывается в результате нуклеофильной атаки водой по наиболее замщенному атому углерода C(2):
Для получения простых эфиров более эффективны по сравнению с ацетатом ртути трифторацетат ртути Hg(OCOCF3)2 или трифлат ртути Hg(OSO2CF3)2:
Присоединение солей ртути к алкенам представляет собой наиболее яркий пример реакции сопряженного присоединения к двойной связи, где роль внешнего нуклеофильного агента выполняет растворитель. По этой причине процесс часто называют реакцией сольватомеркурирования (сольвомеркурирования). Стереохимия двойного процесса оксимеркурирования – демеркурирования зависит от стереохимического результата каждой отдельной стадии. Для оксимеркурирования, как и для других реакций с участием циклического катиона, характерно анти-присоединение. Однако радикальное демеркурирование не отличается высокой стереоселективностью, поэтому весь процесс в целом тоже нестереоселективен.
5.4.3.ж. ПРИСОЕДИНЕНИЕ СУЛЬФЕНГАЛОГЕНИДОВ
Взаимодействие ковалентных сульфенгалогенидов (старое название – сульфенилгалогениды) RSCl и RSBr с алкенами длительное время считалось одной из самых простых AdE-реакций алкенов. Присоединение сульфенгалогенидов дает β-галогентиоэфиры с выходами, близкими к количественному. При этом не наблюдается образованием продуктов сопряженного присоединения растворителя, даже уксусной кислоты или ацетонитрила, и не осуществляются скелетные перегруппировки, Стереохимия реакции присоединения RSCl и RSBr практически всегда соответствует анти-присоединению групп RS- и галогена, а ее региоселективность – преимущественному антимарковниковскому присоединению для терминальных алкенов (1-алкенов):
Для замещенных стиролов, однако, присоединение сульфенгалогенидов протекает в полном соответствии с правилом Марковникова.
Для этой реакции без серьезной аргументации был предложен механизм с участием мостикового эписульфониевого иона:
С точки зрения общей методологии изучения AdE-процессов, такие особенности, как отсутствие сопряженного присоединения растворителя и скелетных перегруппировок, а также антимарковниковская ориентация, должны были бы скорее рассматриваться как серьезные аргументы против образования мостикового катиона. Эти представления о механизме присоединения сульфенгалогенидов к алкенам были подвергнуты критике в работах Н.С. Зефирова и В.А. Смита. Они показали, что при присоединении к двойной связи ионно построенного реагента RS+BF4- или RS+SbF6- действительно образуется истинный эписульфониевый ион, который гладко раскрывается при действии самых разнообразных нуклеофильных агентов, таких как уксусная кислота, воды, спирты, тиолы, ацетонитрил и др. Раскрытие эписульфониевого иона происходит в строгом соответствии в правилом Марковникова, т.е. нуклеофильный агент Nu: атакует более замещенный атом углерода:
Присоединение RSCl и трет-бутилэтилену характеризуется полным отсутствием скелетных перегруппировок, единственным продуктом реакции является (CH3)3CCH(SR)CH2Cl. В противоположность этому при присоединении RS+BF4- к трет-бутилэтилену происходит 1,2-сдвиг метильной группы, характерный для реакции электрофильного присоединения других реагентов – хлора, галогеноводородов, воды. Присоединение RSCl и RSBr к цис- и транс-изомерам бутена-2, гексена-3 и других алкенов происходит стереоспецифично в широком интервале температур от –40 до +150ºС, тогда как при присоединении катиона RS+ уже при +20ºС происходит стереоконверсия, и образуется смесь трео- и эритро-продуктов присоединения:
Присоединение сульфенгалогенидов к алкенам в присутствии LiClO4 характеризуется теми же особенностями (перегруппировки, сопряженное присоединение, присоединение по правилу Марковникова), что и присоединение иона RS+. Влияние перхлората лития на стереохимию и направление присоединения сульфенхлоридов получило название «допинг-эффекта». Таким образом, присоединение ионного SR+X- и ковалентного реагентов к двойной связи осуществляется по различным механизмам и эписульфониевый ион в качестве интемедиата получается только при присоединении ионного реагента. Для наиболее полного описания механизма присоединения как ионных (RS+), так и ковалентных (RSCl) реагентов Н.С. Зефировым и В.А. Смитом была предложена общая схема, предполагающая образование в качестве интермедиатов различных типов ионных пар, эписульфониевого иона и ковалентного сульфурана:
Эта схема, в сущности, является расширенным приложением схемы Уйнстейна для описания реакций мономолекулярного нуклеофильного замещения SN 1-типа у насыщенного атома углерода (гл. 9). Приведенные выше даные по присоединению катиона RS+ и сульфенгалогенидов находятся в хорошем соответствии с последовательностью превращений, предполагаемой в данной схеме. Будущие исследования покажут, можно ли с ее помощью описывать закономерности, наблюдающиеся при присоединении к кратной связи других ковалентных электрофильных агентов – галогенов, галогеноводородов, R2PCl, RSeCl в неполярной и малополярной среде. Вполне возможно, что анти-присоединение неполярных ковалентных хлора или бром к алкенам в неполярных растворителях (CCl4, CHCl3) осуществляется по механизму, в котором галогенониевый ион в качестве интермедиата вообще не образуется, а анти-присоединение достигается с участием интергалогенида типа Haln, где n=4,6 или даже восьми атомам галогена. Для приготовления галогеноводорода в малополярной среде это практически эквивалентно механизму без образования дискретного карбокатиона, который был описан в одном из предыдущих разделов этой главы.
5.4.3.з ПРИСОЕДИНЕНИЕ ДРУГИХ ЭЛЕКТРОФИЛЬНЫХ РЕАГЕНТОВ
Многие другие электрофильные агенты также присоединяются по двойной связи алкенов. Среди них отметим бромазид Br+δN3-δ и йодазид I+δN3-δ, йодизоцианат I+δ - N3-δ = C = O, диродан, хлористый нитрозил Cl-δ – N+δ = O, C6H5I(OAc)2 и RSeCl. Присоединение IN3, BrN3, INCO и других псевдогалогенидов, где азид-, изоцианат- и тиоцианат выполняют функцию галогенид-иона, по своему механизму, стерео- и региоселективности принципиально не отличается от присоединения несимметричных галогенов. Присоединение IN3, BrN3 и INCO имеет синтетическое значение, поскольку азидо-группа может быть восстановлена до амино-группы с помощью диборана B2H6 или каталитически водородом в присутствии палладия на карбонате бария. Сам йодазид получают в растворе в эфире при обработке азида серебра или натрия эфирным раствором йода или хлористого йода при 0 – 10ºС:
Йодазид IN3 стерео- и региоселективно по Марковникову присоединяется к двойной связи, причем стереохимия реакции соответствует анти-присоединению. Образующиеся транс-β-йодалкилазиды при восстановлении в помощью алюмогидрида лития превращаются в азиридины – соединения с трехчленным циклом и одним атомом азота:
Йодизоцианат I-N=C=O. Это соединение получается при взаимодействии легко доступного цианата серебра с йодом в эфире. В отличие от взрывоопасного йодазида этот реагент достаточно стабилен и может быть выделен в индивидуальном виде. Йодизоцианат стереоспецифично присоединяется по двойной связи алкенов с образованием 2-йодалкилизоцианатов, которые превращаются в карбаматы в результате присоединения метанола или другого спирта (гл. 21). При взаимодействии 2-йодкарбамата с гидроксидом натрия происходит циклизация с последующим щелочным гидролизом сложноэфирной группы. Конечным продуктом этой цепи превращения оказывается азиридин (азациклопропан):