GL_05_Алкены (1125813), страница 11
Текст из файла (страница 11)
Цитронеллол – спирт, входящий в состав розового масла, масла герани и лимона, - окисляется смесью перманганата калия и перйодата натрия в водном ацетоне при 5 – 10ºС до 6-гидрокси-4-метилгексанкарбоновой кислоты с количественным выходом:
Этим методом было установлено строение феромона (полового аттрактанта) непарного шелкопряда. Реагент окисляет только двойную связь, не затрагивая окси- и ацетоксигруппу:
В другой разновидности этого метода вместо перманганата калия используют каталитические количества тетраоксида осмия (Лемье, Джонсон, 1956). Особое достоинство комбинации OsO4 и NaIO4 заключается в том, что она позволяет остановить окисление на стадии альдегида. Тетраоксид осмия присоединяется к двойной связи алкена с образованием осмата, который окисляется перйодатом натрия до карбонильных соединений с регенерацией четырехокиси осмия:
Вместо тетраоксида осмия можно использовать и тетраоксид рутения RuO4. Окислительная деструкция алкенов по Лемье – Джонсу приводит к тем же продуктам, что и озонолиз с восстановительным расщеплением озонидов:
В терминах, характерных для современной органической химии, это означает, что комбинация OsO4 – NaIO4 представляет собой синтетический эквивалент реакции озонолиза алкенов с последующим восстановительным расщеплением. Аналогично окисление алкенов смесью перманганата и перйодата - это синтетический эквивалент озонолиза с окислительным расщеплением озонидов.
5.4.7. ГИДРОБОРИРОВАНИЕ АЛКЕНОВ
Эта реакция была открыта Г. Брауном сравнительно недавно, в 1959 г., тем не менее в настоящее время она приобрела очень большое значение в органическом синтезе, особенно в многостадийных синтезах биологически активных природных соединений: витаминов, феромонов, лекарственных веществ и др. Гидроборирование алкенов представляет собой присоединение гидридов бора по двойной связи. Простейший гидрид бора, боран BH3, неизвестен. Это соединение является крайне нестабильной кислотой Льюиса с секстетом электронов у атома бора. Боран самопроизвольно димеризуется в более стабильный диборан. Диборан имеет необычную мостиковую структуру, характерную для электронодефицитных молекул. Мостиковая структура B2H6 является классическим примером двухэлектронной трехцентровой связи B – H …B.
Четыре атома водорода и два атома бора диборана лежат в одной плоскости, а оба «мостиковых» атома водорода расположены над и под этой плоскостью.
Молекулярно-орбитальную картину мостиковых связей в диборане можно построить следующим образом. Брутто-формула диборана B2H6 такая же, как брутто-формула этана C2H6, но диборан имеет на 2 электрона меньше. Рассмотрим образование B2H6 и C2H6 из двух фрагментов BH3 и CH3 соответственно. Молекула этана образуется из двух метильных радикалов, неспаренные электроны которых объединяются на связывающей σ-орбитали, образуя прочную σ-связь:
При подобном объединении двух фрагментов BH3 связь B – B не может образоваться, поскольку объединяющиеся орбитали фрагментов BH3 не имеют электронов:
Чтобы произошла реакция 2BH3 = B2H6 нужно, чтобы пустые орбитали взаимодействовали с заполненными. Но заполненными орбиталями в BH3 являются орбитали связей B – H. Следовательно, объединение двух молекул BH3 в димер B2H6 должно осуществляться по-иному, чем объединение двух радикалов CH3•, а именно так, чтобы перекрывание пустых орбиталей бора с занятыми σ-орбиталями связей B – H было максимальным:
Три атома B…H…B связаны одной парой электронов, и поэтому такая связь называется трехцентровой. Трехцентровая двухэлектронная связь слабее обычной двухцентровой связи (как в этане), но зато в диборане таких связей две, что и обеспечивает прочность димера. Известны и высшие гидриды бора необычной структуры: пентаборан B5H9, гесаборан B6H10 и другие, также содержащие «водородные мостики» Диборан представляет собой бесцветный, ядовитый газ, мгновенно воспламеняющийся га воздухе, поэтому все реакции с ним следует проводить в инертной атмосфере. Диборан получают при взаимодействии боргидрида натрия и эфирата трехфтористого бора в ТГФ или диметиловом эфире этиленгликоля (диметоксиэтане – ДМЭ).
Диборан как кислота Льюиса при взаимодействии с ТГФ или другим простым эфиром как основанием Льюиса образует донорно-акцепторный комплекс:
Этот комплекс легко отщепляет BH3, который быстро и количественно присоединяется к двойной связи алкена с образованием триалкилборана:
Гидроборирование включает три стадии. На первой стадии боран присоединяется к алкену с образованием моноалкилборана:
Моноалкилборан содержит две связи B – H, поэтому последовательно присоединяет еще две молекулы алкена:
Присоединение борана к двойной связи происходит региоселективно против правила Марковникова таким образом, что атома бора оказывается связанным с наименее замещенным атомом углерода при двойной связи. Присоединение борана по двойной связи происходит стереоспецифично как син-присоединение с одновременным связыванием атома бора и водорода борана с двумя атомами углерода при двойной связи. Поэтому обе новые связи C – B и C – H образуются с одной и той же стороны кратной связи. Для этой реакции предложено четырехцентровое переходное состояние:
В рамках теории МО эта реакция описывается как взаимодействие заполненной π-орбитали алкена с пустой p-орбиталью бора с той же самой стороны симметрией орбитали. Образование связи C – B сопровождается синхронным разрывом связи B – H:
Региоселективность присоединения BH3 легко предсказать на основе как электронных, так и стерических факторов. Бор обладает меньшей электроотрицательностью (2,0) по сравнению с водородом (2,2), поэтому связь B – H должна быть слабополярной. Кроме того, атом бора в боране является электронодефицитным центром с пустой p-орбиталью, что определяет его электрофильные свойства. Радиус атома бора намного больше радиуса атома водорода. Поэтому стерический фактор также благоприятствует присоединению бора к наименее замещенному и доступному атому углерода. Полагают, что именное стерический фактор играет решающую роль, и направление присоединения борана к двойной связи определяется стерическим контролем реакции.
Монозамещенные алкены в реакции с бораном образуют триалкилбораны, однако для три- или тетраалкилзамещенных при двойной связи алкенов гидроборирование легко можно остановить на стадии образования моно- и диалкилборана. Особенно большое значение в органическом синтезе приобрел бис-(3-метил-2-бутил)-боран, образующийся при взаимодействии BH3 с двумя молекулами 3-метилбутена-2:
Этот реагент получил тривиальное название – дисиамилборан (Sia)2BH. Тетраметилэтилен образует с бораном аддукт состава 1:1 – 2,3-диметилбутил-2-боран, который называется тексилбораном:
Син-присоединение борана к двойной связи проще всего может быть проиллюстрировано на примере гидроборирования 1-метилциклогексена с помощью BD3:
Алкилбораны, как правило, не выделяют индивидуально, а используют непосредственно для синтеза требуемого целевого продукта. Алкилбораны являются ключевыми реагентами для многих самых разнообразных превращений, большинство из которых было описано Г. Брауном с сотрудниками.
Связь углерод – бор в триалкилборанах под действием кислотных агентов расщепляется с образованием предельных углеводородов:
Так как карбоновые кислоты в этой реакции по своей реакционной способности превосходят более сильные кислоты (H2SO4, HCl, HBr и др.), для протолиза триалкилборанов был предложен механизм, включающий шестизвенное циклическое переходное состояние с нуклеофильной координацией карбонильного кислорода по атому бора и электрофильной атакой атома водорода недиссоциированной формы RCOOH по атому углерода триалкилборана:
Этот метод особенно удобен в том случае, когда необходимо ввести изотопную дейтериевую метку в алкан. Тогда в качестве кислотного агента используют дейтероуксусную кислоту CH3COOD. В целом гидроборирование алкенов с последующим кислотным расщеплением триалкилборанов представляет собой легкодоступный и удобный способ превращения алкенов в алканы.
Гораздо более интересные и разнообразные синтетические возможности открывает расщепление триалкилборанов перекисью водорода или галогенами в щелочной среде. При обработке триалкилборанов щелочным раствором перекиси водорода происходит расщепление связи C – B с образованием спиртов. Таким образом, последовательность этих двух стадий гидрборирования алкенов представляет собой метод гидратации алкенов:
Гидроборирование несимметричных алкенов с последующим окислением H2O2 позволяет установить региоспецифичность и стереоспецифичность всего процесса. Так, например, при гидроборировании 1-метилциклогексена с последующим окислением триалкилборана щелочным раствором перекиси водорода образуется транс-2-метилциклогексанол. Это означает, что при окислении группа BR2 замещается на гидроксил с полным сохранением геометрической конфигурации. Направление гидратации алкена в этом двухстадийном процессе полностью противоположно региоселективности прямой гидратации алкенов или региоселективности оксимеркурирования – демеркурирования алкенов (разд. 5.4.3.е). Гидратация алкена, т.е. суммарный процесс гидроборирования – окисления, имеет ориентацию, прямо противоположную правилу Марковникова (антимарковниковское присоединение по кратной связи). Для циклических монозамещенных и дизамещенных алкенов гидроборирование – окисление дает уникальную возможность синтеза первичных спиртов с суммарным выходом 80 – 95%:
Для окислительного расщепления триалкилборанов в щелочной среде предложен следующий механизм превращений. Сначала гидропероксил-ион присоединяется к электронодефицитному атому бора триалкилборана:
Образующийся при этом анионный боратный интермедиат претерпевает перегруппировку с потерей гидроксил-иона. Движущей силой этой перегруппировки является образование очень прочной связи B – O вместо менее прочной связи C – B: