Учебник_Погорелов_1995 (991113), страница 39
Текст из файла (страница 39)
2. Докажите, что через любую точку прямой в пространстве можно провести две различные перпендикулярные ей прямые. 3. Прямые АВ, АС и АР попарно перпендикулярны (рис. 371). Найдите отрезок СР, если: 1) АВ=З см, ВС= =7 см, АР=1 5 см; 2) ВР=У см, ВС=16 см, АР=5 см; 3) АВ=Ь, ВС=а, АР=А; 4) ВР=с, ВС=а, АР=с~. 4'. Стороны четырехугольника АВСР и прямоугольника А,В~С|Р~ соответственно параллельны. Докажите, что АВСР— прямоугольник.
П 5. Докажите, что через точку, не лежащую в данной 144 плоскости, нельзя провести более одной прямой, пер- пендикулярной плоскости. 6. Через центр описанной около треугольника окружности проведена прямая, перпендикулярная плоскости треугольника. Докажите, что каждая точка втой прямой равно- удалена от вершин треугольника (рис. 372). Я 17. Перпендинрлпрноссь прпмых и плосносеей Рис. 371 Рнс.
372 7. Через вершину А прямоугольника АВСР проведена прямая АК, перпендикулярная его плоскости. Расстояния от точки К до других вершин прямоугольника равны 6 м, 7 м и 9 м. Найдите отрезок АК. 8. Через вершину острого угла прямоугольного треугольника АВС с прямым углом С проведена прямая АР, перпендикулярная плоскости треугольника. Найдите расстояния от точки Р до вершин В и С, если АС=а, ВС=Ь, АР=С. П 9. Докажите, что через данную точку прямой можно провести одну и только одну перпендикулярную ей плоскость. 10.
Через точку А прямой а проведены перпендикулярные ей плоскость р н прямая Ь. Докажите, что прямая Ь лежит в плоскости р. 11. Докажите, что через данную точку плоскости можно провести одну и только одну перпендикулярную ей пряму)р. П 146 12. Докажите, что через любую точку А можно провести прямую, перпендикулярную данной плоскости а. 13. Через вершину квадрата АВСР проведена прямая ВМ, перпендикулярная его плоскости. Докажите, что: 1) прямая АР перпендикулярна плоскости прямых АВ и ВМ; 2) прямая СР перпендикулярна плоскости прямых ВС и ВМ.
14. Через точки А и В проведены прямые, перпендикулярные плоскости сс, пересекающие ее в точках С и Р соответственно. Найдите расстояние между точками А н В, если АС= 3 м, ВР = 2 м, СР= 2,4 м и отрезок АВ не пересекает плоскость а. 15. Верхние копны двух вертикально стоящих столбов, удаленных на расстояние 3,4 м, соединены перекладиной.
взэ 10 класс Высота одного столба 5,8 м, а другого — 3,9 м. Найдите длину перекладины. 16. Телефонная проволока длиной 15 м протянута от телефонного столба, где она прикреплена на высоте 8 м от поверхности земли, к дому, где ее прикрепили на высоте 20 м. Найдите расстояние между домом и столбом, предполагая, что проволока не провисает. П 17. Точка А находится на расстоянии а от вершин равностороннего треугольника со стороной а. Найдите расстояние от точки А до плоскости треугольника. 18. Из точки Я вне плоскости а проведены к ней трн равные наклонные ЯА, ЯВ, ЯС и перпендикуляр ЯО.
Докажите, что основание перпендикуляра О является центром окружности, описанной около треугольника АВС. 19. Стороны равностороннего треугольника равны 3 м. Найдите расстояние до плоскости треугольника от точки, которая находится на расстоянии 2 м от каждой из его вершин. 20*. В равнобедренном треугольнике основание и высота равны 4 м. Данная точка находится на расстоянии 6 м от плоскости треугольника и на равном расстоянии от его вершин. Найдите это расстояние.
21. Расстояния от точки А до вершин квадрата равны а. Найдите расстояние от точки А до плоскости квадрата, если сторона квадрата равна Ь. 22. Найдите геометрическое место оснований наклонных данной длины, проведенных из данной точки к плоскости. 23. Из точки к плоскости проведены две наклонные, равные 10 см и 17 см. Разность проекций этих наклонных равна 9 см. Найдите проекции наклонных. 24. Из точки к плоскости проведены две наклонные. Найдите длины наклонных, если: 1) одна из них на 26 см больше другой, а проекции наклонных равны 12 см и 40 см; 2) наклонные относятся как 1: 2, а проекции наклонных равны 1 см я 7 см. 25. Из точки к плоскости проведены две наклонные, равные 23 см и 33 см. Найдите расстояние от этой точки до плоскости, если проекции наклонных относятся как 2: 3.
26. Докажите, что если прямая параллельна плоскости, то все ее точки находятся на одинаковом расстоянии от плоскости. 27. Через вершину прямого угла С прямоугольного треугольника АВС проведена плоскость„параллельная гипотенузе, на расстоянии 1 м от нее. Проекции катетов на эту плоскость равны 3 м и 5 м. Найдите гипотенузу. 28. Через одну сторону ромба проведена плоскость на расстоянии 4 м от противолежащей стороны.
Проекции диа- е 17. Пеуиеиоикулиуиость пулмык и плоскостей гоналей на эту плоскость равны 3 м и 2 м. Найдите проекции сторон. 29. Из концов отрезка АВ, параллельного плоскости, прове- дены перпендикуляр АС и наклонная ВЭ, перпендикулярная отрезку АВ (рис. 373). Чему равно расстояние СР, если АВ=а, АС=Ь, ВЭ=-с? 30. Докажите, что расстояния от всех точек плоскости до параллельной плоскости одинаковы. 31. Расстояние между двумя параллельными плоскостями равно а. Отрезок длины Ь своими концами упирается в эти плоскости. Найдите проекцию отрезка на каждую из плоскостей. 32.
Два отрезка длин а и Ь упираются концами в две параллельные плоскости. Проекция первого отрезка (длины а) на плоскость равна с. Найдите проекцию второго отрезка. 33. Концы данного отрезка, не пересекающего плоскость, удалены от нее на 0,3 м и 0,5 м. Как удалена от плоскости точка, делящая данный отрезок в отношении 3;7? 34. Через середину отрезка проведена плоскость.
Докажите„ что концы отрезка находятся на одинаковом расстоянии от этой плоскости. 35. Через диагональ параллелограмма проведена плоскость. Докажите, что концы другой диагонали находятся на одинаковом расстоянии от этой плоскости. 36. Найдите расстояние от середины отрезка АВ до плоскости не пересекающей этот отрезок, если расстояния от точек А и В до плоскости равны: 1) 3,2 см и 5,3 см; 2) 7,4 см и 6,1 см; 3) а и Ь.
37*. Решите предыдущую задачу, считая, что отрезок АВ пе- ресекает плоскость. 38. Отрезок длины 1 м пересекает плоскость, концы его уда- лены от плоскости на 0,5 м и 0,3 и. Найдите длину проекции отрезка на плоскость. Зйе. Через основание трапеции проведена плоскость, отстоящая от другого основания на расстояние а. Найдите расстояние от точки пересечения диагоналей трапеции до этой плоскости, если основания трапеции относятся как ш:и (рис. 374). Рис. 373 Рис. 373 Рис. 374 268 10 класс 40. Через сторону параллелограмма проведена плоскость на расстоянии а от противолежащей стороны. Найдите расстояние от точки пересечения диагоналей параллелограмма до этой плоскости. 41.
Из вершины квадрата восставлен перпендикуляр к его плоскости. Расстояния от конца этого перпендикуляра до других вершин квадрата равны а и Ь )а(Ь). Найдите длину перпендикуляра и сторону квадрата (рис. 375). 42. Из вершины прямоугольника восставлен перпендикуляр к его плоскости. Расстояния от конца этого перпендикуляра до других вершин прямоугольника равны а, Ь, с )а(с, Ь(с).
Найдите длину перпендикуляра и стороны прямоугольника. 43. Из данной точки к плоскости проведены две равные наклонные длиной 2 м. Найдите расстояние от точки до плоскости, если наклонные образуют угол 60, а их проекции перпендикулярны. 44. Из точки, отстоящей от плоскости на расстояние 1 м, проведены две равные наклонные. Найдите расстояние между основаниями наклонных, если известно, что наклонные перпендикулярны и образуют с перпендикуляром к плоскости углы, равные 60'.
П 45. Через центр вписанной в треугольник окружности проведена прямая, перпендикулярная плоскости треугольника. Докажите, что каждая точка этой прямой равноудалена от сторон треугольника. 46. К плоскости треугольника из центра. вписанной в него окружности радиуса 0,7 и зосставлен перпендикуляр длиной 2,4 м.
Найдите расстояние от конца этого перпендикуляра до сторон треугольника. 47. Расстояние от данной точки до плоскости треугольника равно 1,1 м, а до каждой из его сторон — 6,1 м. Найдите радиус окружности, вписанной в этот треугольник. 48. Из вершины равностороннего треугольника АВС восставлен перпендикуляр АВ к плоскости треугольника.
Найдите расстояние от точки О до стороны ВС, если А1) = =13 см, ВС=6 см. 49. Через конец А отрезка АВ длины Ь проведена плоскость, перпендикулярная отрезку, и в этой плоскости проведена прямая. Найдите расстояние от точки В до прямой, если расстояние от точки А до прямой равно а. 50. Расстояния от точки А до всех сторон квадрата равны а. Найдите расстояние от точки А до плоскости квадрата, если диагональ квадрата равна И. 51*. Точка М, лежащая вне плоскости данного прямого угла, удалена от вершины угла на расстояние а, а от его сторон У 1е. Перпендипулярпосси прямых и плоскостей на расстояние Ь. Найдите расстояние от точки М до плос-- кости угла. 52*.
Дан равнобедренный треугольник с основанием б м и боковой стороной 5 м. Из центра вписанного круга восставлен перпендикуляр к плоскости треугольника длиной 2 м. Найдите расстояние от конца этого перпендикуляра до сторон треугольника. 53. Из вершины прямого угла С треугольника АВС восставлен перпендикуляр СР к плоскости треугольника. Найдите расстояние от точки Р до гипотенузы треугольника, если АВ=а, ВС=Ь, СИ=с. П 54. Даны прямая а и плоскость к. Проведите через прямую а плоскость, перпендикулярную плоскости а.
55. Даны прямая а и плоскость к. Докажите, что все прямые, перпендикулярные плоскости сс и пересекающие прямую а, лежат в одной плоскости, перпендикулярной плоскости а. 56. Из вершин А и В равностороннего треугольника АВС восставлены перпендикуляры АА~ и ВВ| к плоскости треугольника. Найдите расстояние от вершины С до середины отрезка А~Во если АВ=-2 м, СА1=3 м, СВ1 =7 м и отрезок А1В1 не пересекает плоскость треугольника.