Главная » Просмотр файлов » Денисов__Кинетика_гомогенных_химических_реакций_(2_изд)

Денисов__Кинетика_гомогенных_химических_реакций_(2_изд) (972291), страница 23

Файл №972291 Денисов__Кинетика_гомогенных_химических_реакций_(2_изд) (ЭВМ для спецгруппы) 23 страницаДенисов__Кинетика_гомогенных_химических_реакций_(2_изд) (972291) страница 232019-04-28СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 23)

4. Диффузия частиц происходит в результате их поступательного движения, коэффициент диффузии 0 яе ж 0,1 — 1 смцс (р яэ 10' Па) и зависит от давления газа ()) р-') Вращение заторможено стенками клетки, поворот частицы сопровождается преодолением потенциального барьера Е„, который зависит от снл межмолекулярного взаимодей— е„гяг стеня, тг е 3. Частица свободно вращается, частота вращения т, определяется только моментами инерции частицы и температурой, частота вращений Т'гт й ?.

Кинетическая теорня нтндкостей Разработанная Я. И. Френкелем кинетическая теория жидкости рассматривает жидкость как динамическую систему частиц, напоминающую отчасти кристаллическое состояние. Прн тегнпературах, близ- 113 С другой стороны, жидкое состояние по ряду важных показателей близко к твердому. Во-первых, межмолекулярные расстояния в жидкости близки к таковым в твердом теле, так как при плавлении последнего объем вещества изменяется незначительно (обычно он увеличивается не более чем на 10 %). Во-вторых, энергия межмолекулярного взаимодействия в жидкости и в твердом теле отличается незначительно; это следует из того факта, что теплота плавления много меньше теплоты испарения. Например, для воды ЬНпл =- б кДж/моль, а ЛН„,н == 45 кДж!моль; лля бензола ЬН„= 11 кпДлж)моль, а ЛН„с„= 45 кДж/моль.

В-третьих, теплоемкость вещества при плавлении меняется очень слабо, т. е. она близка для этих обоих состояний. Отсюда следует, что характер движения частиц в жидкости близок к таковому в твердом теле. В-четвертых, жидкость, как и твердое тело, выдерживает без разрыва большие растягивающие усилия. Различие между жидкостью и твердым телом заключается в их текучести: твердое тело сохраняет свою 4юрму, жидкость даже под влиянием небольшого усилия легко ее меняет.

Эти свойства вытекают нз таких особенностей строения жидкости, как сильное межмолекулярное взаимодействие, ближний порядок в расположении молекул и способность молекул сравнительно быстро менять свое положение. При нагревании жидкости от температуры замерзания до температуры кипения ее свойства плавно меняются, с нагреванием постепенно усиливаются ее черты сходства с газом. 0,5 0 с 4 /,0 0,5 Рис. !6.

Функция иаотностн си распределении частиц я аааисииостн от расстояния гаге. а — а тазс; 6 — и жидкости, где ге-»адике частияж !!6 ких к температуре плавления, тепловое движение в жидкости сводится в основном к гармоническим колебаниям частиц около некоторых средних положений равновесия. В отличие от кристаллического состояния эти положения равновесия молекул в жидкости имеют для каждой молекулы временный характер. Поколебав!вись около одного попожения равновесия в течение некоторого времени т, молекула перескакивает в новое положение, расположенное по соседству.

Такой перескок происходит с затратой энергии О, лг поэтому время «оседлой жизни» т йа -------- зависит от температуры следующим образом: т =т, а"'~нт, где т, — период одного колебания около положения равновесия. Для и 'Угс воды при колчнатной температуре а т — 10 "с, т =1,4.10 " с, т. е. И одна молекула, совершив около 100 колебаний, перескакивает в С,5 новое положение, где продолжает совершать колебания.

Йз данных по рассеиванию рентгеновских лучей и нейтронов можно вычис- 0 лить функцию плотности распре- » деления частиц р в зависимости 5 ггг от расстояния г от одной частицы, выбранной за центр. При наличии дальнего порядка в кристаллическом твердом теле функция Р (г) имеет ряд четких максимумов и минимумов (рпс. 16).

В жидкости нз-за высокой подвижности частиц сохраняется только ближний порядок. Это четко следует из рентгенограмм жидкостей: функция р (г) для жидкости имеет четкий первый максимум, размытый второй и затем р(г) = сопя(. Плавление кинетическая теория описывает следующим образом.

В кристаллической решетке твердого тела всегда существуют в небольшом количестве вакансии (дырки), медленно блуждающие по кристаллу. Чем ближе температура к температуре плавления. тем выше концентрация «дырок», тем быстрее они перемещаются по образцу. В точке плавления процесс образования «дырок» приобретает лавинообразный кооперативный характер, система частиц становится динамичной, исчезает дальний порядок, появляется текучесть. Решающую роль в плавлении играет образование свободного объема в жидкости, который н делает систему текучей.

Важнейшее отличие жидкости от твердого кристаллического тела заключается в том, что в жидкости существует свободный объем, значительная часть которого имеет вид флуктуаций («дырок»), блуждание которых по жидкости и придает ей такое характерное для нее качество, как текучесть.

Число таких «ды- 1 к», их объем и подвижность зависят от температуры. При низкой темя ратуре жидкость, если она не превратилась в кристаллическое тело, ~зновится аморфным твердым телом с очень низкой текучестью из-за )меньшения объема и подвижности «дырок». Наряду с кинетической теорией в последние десятилетия успешно развивается статистическая теория жидкости. ГЛАВА Х!тГ. ВЫСТРЫЕ РВАИЦИИ В ЖИДКОСТИ Лмтсратура: 23, 25, 64, 103, 161, 164, 167„185, 214, 249 (т.

1). $4. Диффузионио-контролируемые реакции Бимолекулярной реакции предшествует встреча двух частиц, которая происходит в результате их диффузионного перемещения. Большинство химических реакций протекает с заметной энергией активации, и поэтому осуществлению элементарного процесса предшествует огромное число встреч.

Такие реакции в жидкости называют медленными, их протекание определяется всецело спецификой химического взаимодействия частиц и не зашшит от константы скорости диффузионных встреч. Например, для бимолекулярной реакции, протекающей с константой скорости й =- 1О' ехр ( — 57/)с т ), отношение й)яо = — 1О " при комнатной температуре и яо =- 10' л! (моль . с). Встречаются, однако, реакции, протекающие практически без энергии активации. К ним относятся рекомбииация ионов, атомов и свободных радикалов. Такие реакции протекают очень быстро со скоростью, близкой к скорости диффузионных встреч в жидкости, их называют быстрыми или дифтрузионно-контролируемыми реакциялш, скорость, которых зависит уже от физического процесса диффузии частиц-реагентов в растворе. Константу скорости поступательной диффузии выражают через коэффициенты диффузии реагентов РА и Рв следующим образом (г в см, Р— в см' с '): Ап — — -.4я (гл 1-га) (Ох+Оп) см»1«=4 1О-»Ы (т ток гз) (77д+ Гув) л/(моль.с).

ДлЯ невизких жиДкостей )тп лежит в Диапазоне 10Г« — 1У л! 1(моль . с) при 300 — 400 К и зависит от массы, размеров и структуры молекул растворителя и реагентов. Часто коэффициент Р выражают по формуле Стокса — Эйнштейна через вязкость Р = 10' т«776 пЬгт), днако такая формула часто дает неудовлетворительные результаты. 1!оэтому для более корректного вычислении используют вместот) скорректированную вязкость т)*: т)* =- т) (О,!6 + 0,4 г!г,), где г, — ра.(иус молекулы растворителя; г — радиус диффунднрующей частицы.

117 В общем случае диффузионно-контролируемые реакции рассматри- вают в рамках общей схемы бимолекулярных реакций в жидкости: «р « А+В +А, В ' продукты »р Скорость реакции в квазистационарном состоянии, когда д )А, ВИ1 ы О, равна и=«[А В)=««р(«+«р) '[А][В) а экспериментально определяемая константа скорости к,п,„= йр х х (1 + йр!А) '. Если й ) кр, то й„„,„= )«р, если й « йр, то й»„„, ж ж к. Квазистационарное состояние устанавливается во времени, математическое выражение для р можно получить, решая диффузионное уравнение (см.

гл. Х[.1), При выполнении условия И~р )) (гд + гв) х х (2 0«вг) г м зависимость наблюдаемой скоРости бимолекУлЯРной реакции описывают уравнением «»поп= «р (! +«р/«)-~ (1+гав (п)у«в 1) ~ (1+ ~оl~) ), где гдв = гд+ гв) 0лв = О«+ 0в Если А и В имеют электрический заряд и испытывают притяжение или отталкивание, то гдв заменяют на г,ее, которое связано с потенциалом [) взаимодействия А и В формулой -1 и'г г»вв= ) ехр [У/РТ) —. «Ав Встречаются реакции, протекающие с константой скорости й( ( йр, но й зависит от вязкости растворителя.

Это происходит, когда по крайней мере одна из частиц-реагентов имеет большой объем, а реагирует своим небольшим участком («реакционным пятном») с невысокой энергией активации. В этом случае экспериментальные результаты трактуют в рамках модели бимолекулярной реакции с «реакционным пятном», где скорость реакции зависит от «площади» пятна, т. е. от вероятности, необходимой для реакции ориентации частиц, и коэффициентов поступательной и вращательной диффузии частиц. Экспериментально наблюдают зависимость )« от т) типа й ' = а + [и), хотя А « йр. $2. Клеточный эффект Экспериментальные проявления клеточного эффекта.

При распаде молекул образовавшаяся пара радикалов некоторое время (1О "— — 1О ' с) находится в одной клетке, в результате чего возникает так называемый клеточный эффект. Этим реакции распада в конденсированной фазе отличаются от распада в газовой фазе. Клеточный эффект при распаде молекул на радикалы проявляется следующим образом.

118 1. В газовой фазе квантовый вьгход фотодиссоциации молекул на радикалы или атомы равен 1. В жидкой фазе он существенно меньше диницы, так как образовавшиеся радикалы частично рекомбинируют а клетке. Например, при фотодиссоциации иода в СС14 при 25 'С кванговый выход Ф вЂ” 0,14, для брома в тех же условиях Ф вЂ” 0,22. 2. По той же причине при термическом распаде инициатора кон. «танта скорости генерирования радикалов й; — 2я в газовой фазе, з в жидкой и твердой фазах й, == 2 ей, где я — константа скорости распада, коэффициент е ( 1 3. В клетке образуются продукты внутриклеточной рекомбинации радикалов. Так, например, при распаде азометана в изооктане образуется 65 % этапа при внутриклеточной рекомбинации метильиых радикалов, в то время как в газовой фазе среди продуктов распада обра.

Характеристики

Тип файла
DJVU-файл
Размер
14,17 Mb
Тип материала
Высшее учебное заведение

Список файлов учебной работы

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6439
Авторов
на СтудИзбе
306
Средний доход
с одного платного файла
Обучение Подробнее