Диссертация (786394), страница 15
Текст из файла (страница 15)
et al. Rolling and slipping motion of Euler’s disk // Phys. Rev. E,vol. 69, 2004, 056610, 6 p.[105] Stanislavsky, A.A.,Weron, K. Nonlinear oscillations in the rolling motion ofEuler’s disk // Physica D156(10), 247-259 (2001)[106] K. Easwar, F.
Rouyer, and N. Menon. Speeding to a stop: The finite-timesingularity of a spinning disk // Physical Review E, 66(045102(R)), 2002.[107] Leine R.L., Measurements of the finite-time singularity of the Euler disk, 7thEUROMECH Solid Mechanics Conference, 2009, Lisbon, Portugal.[108] Leine R.L., Experimental and theoretical investigation of the energydissipation of a rolling disk during its final stage of motion, Arch. Appl.Mech., 2009, V.79, 1063-1082.[109] Saje M., Zupan D., The rattling of Euler’s disk // Multidiscipline Modelingin Materials and Structures, 2006, V.2, № 1, 49-66.[110] Petrie D., Hunt J.L., Gray C.G. Does the Euler Disk slip during its motion?Am. J. Phys., Vol 70, No10, 2002.
pp 1025-1028.[111] Mitsui T., Aihara K., Terayama C., Kobayashi H., Shimomura Y. Can aspinning egg really jump? // Proc. R. Soc. A, 2006, vol. 462, pp. 2897-2905[112] Branicki M., Shimomura Y. Dynamics of an axisymmetric body spinning ona horizontal surface. IV. Stability of steady spin states and the ’rising egg’phenomenon for convex axisymmetric bodies // Proc. R. Soc. A, 2006, vol.462, pp. 3253-3275[113] Batista, M. The nearly horizontally rolling of a thick disk on a rough plane// Regular and Chaotic Dynamics. - 2008. - Vol. 13, iss. 4. - P. 344-354.[114] Batista M., Self-induced jumping of a rigid body of revolution on a smoothhorizontal surface // Non-Linear Mechanics.- 2008.- V.43.
- p. 26-35.105[115] A.P. Ivanov, On Detachment Conditions in the Problem on the Motion of aRigid Body on a Rough Plane // Regular and Chaotic Dynamics, 2008, 13(4), p. 355 - 368[116] В.П. Дьяконов, Вейвлеты. От теории – к практике. – М.: СОЛОН-Р, 2002.– 448 с.[117] Torrence, Christopher, and Gilbert P. Compo. A practical guide to waveletanalysis // Bulletin of the American Meteorological society. Vol. 79, iss. 1.p. 61-78.[118] David B. Go, Daniel A.
Pohlman, A mathematical model of the modifiedPaschen’s curve for breakdown in microscale gaps // J. Appl. Phys. 107,103303 (2010)[119] Albert J. Wallash and Larry Levit, Electrical breakdown and ESD phenomenafor devices with nanometer-to-micron gaps // Proc. SPIE 4980, Reliability,Testing, and Characterization of MEMS/MOEMS II, 87 (January 25, 2003);doi:10.1117/12.478191;106.