Диссертация (786394), страница 14
Текст из файла (страница 14)
Design and Control of an All-Direction SteeringType Mobile Robot, International Journal of Robotics Research. 1993. Vol.12. pp. 411-419.[51] Баландин Д.В., Комаров М.А., Осипов Г.В. Управление движением сферического робота с маятниковым приводом, Известия РАН.
Теория исистемы управления. 2013. № 4. C. 150-163.[52] Kayacan, E., Bayraktaroglu, Z. Y., and Saeys, W., Modeling and Control of aSpherical Rolling Robot: A Decoupled Dynamics Approach, Robotica, 2012,vol. 30, no. 12, pp. 671–680.[53] Yoon J. C., Ahn S. S., Lee Y. J. Spherical robot with new type of twopendulum driving mechanism.
Intelligent Engineering Systems (INES), 201115th IEEE International Conference on. – IEEE, 2011. – pp. 275-279.[54] Zhao, B., Li, M., Yu, H., Hu, H., Sun, L.. Dynamics and motion controlof a two pendulums driven spherical robot. Intelligent Robots and Systems(IROS), 2010 IEEE/RSJ International Conference on. – IEEE, 2010. – pp.147-153.99[55] A. Bolsinov, A.Borisov, I.Mamaev Rolling of a Ball without Spinning on aPlane: the Absence of an Invariant Measure in a System with a Complete Setof Integrals. Regular and Chaotic Dynamics, 2012, 17 (6), pp. 571 - 579.[56] Borisov A. V., Fedorov Y. N., Mamaev I.
S. Chaplygin ball over a fixedsphere: an explicit integration. Regular and Chaotic Dynamics, 2008, 13(6),pp. 557-571.[57] Borisov A. V., Mamaev I. S. Rolling of a non-homogeneous ball over asphere without slipping and twisting. Regular and Chaotic Dynamics, 2007,12(2), pp. 153-159.[58] Борисов, А.В., Мамаев, И.С., Изоморфизм и гамильтоново представление некоторых неголономных систем., Сибирский математический журнал, 2007, Том 48, No 1, с. 33-45.[59] Kilin, A.A., The Dynamics of Chaplygin Ball: the Qualitative and ComputerAnalysis. Regular and Chaotic Dynamics, 2001, 6 (3), pp. 291 - 306[60] Wei-Hsi Chen, Ching-Pei Chen, Wei-Shun Yu, Chang-Hao Lin, and Pei-ChunLin.
Design and Implementation of an Omnidirectional Spherical RobotOmnicron. The 2012 IEEE/ASME International Conference on AdvancedIntelligent Mechatronics July 11-14, 2012, Kaohsiung, Taiwan, pp. 719-724.[61] Mikhail Svinin, Akihiro Morinaga, Motoji Yamamoto. On the dynamicmodel and motion planning for a spherical rolling robot actuated byorthogonal internal rotors. Regular and Chaotic Dynamics, 2013, Volume18, Number 1-2, Page 126-143[62] Morinaga A., Svinin M., Yamamoto M. A Motion Planning Strategy for aSpherical Rolling Robot Driven by Two Internal Rotors. IEEE Transactionson Robotics, 2014, 30(4), pp. 993-1002.[63] Svinin M., Morinaga A., Yamamoto M.
On the dynamic model and motionplanning for a class of spherical rolling robots. Robotics and Automation100(ICRA), 2012 IEEE International Conference on. – IEEE, 2012. – С. 32263231.[64] A.O. Kazakov On the Chaotic Dynamics of a Rubber Ball with Three InternalRotors. Nonlinear Dynamics & Mobile Robotics, 2014, 2(1), pp. 73-98.[65] Борисов А.В., Мамаев И.С. Динамика твердого тела. Гамильтоновы методы, интегрируемость, хаос. Москва-Ижевск: «Институт компьютерных исследований», 2005.
576 с.[66] Маркеев А. П. Теоретическая механика: Учебник для высших учебныхзаведений. Москва-Ижевск: НИЦ «Регулярная и хаотическая динамика»,2007. 592 с.[67] Borisov A. V., Mamaev I. S. Rolling of a non-homogeneous ball over asphere without slipping and twisting, Regul. Chaotic Dyn., 2007, 12 (2), pp.153-159[68] А. В. Борисов, И. С.
Мамаев, И. А. Бизяев. Иерархия динамики прикачении твердого тела без проскальзывания и верчения по плоскости исфере, Нелинейная динамика, 2013, 9 (2), стр. 141-202[69] А. В. Болсинов, А. В. Борисов, И. С. Мамаев. Качение без верченияшара по плоскости: отсутствие инвариантной меры в системе с полнымнабором интегралов, Нелинейная динамамика, 2012, 8 (3), стр. 605-616[70] Koiller J., Ehlers K.
M. Rubber rolling over a sphere. Regul. Chaotic Dyn.,2007, vol. 12 no. 2, pp. 127-152.[71] Ahn S.-S., Lee Y.-J. Novel Spherical Robot with Hybrid Pendulum DrivingMechanism // Advances in Mechanical Engineering, 2014, vol. 2014,456727, 14 p.[72] Chica J.G., Perez Molina M., Perez Polo M.F. Path tracking and stability ofa rolling controlled wheel on a horizontal plane by using the nonholonomicconstraints // International Journal of Mechanical Sciences, 2014, vol. 89, pp.423–438101[73] Forbes J.R., Barfoot T.D., Damaren C.J.
Dynamic modeling and stabilityanalysis of a power-generating tumbleweed rover // Multibody SystemDynamics, 2010, vol. 24, pp. 413-439[74] Hartl A.E., Mazzoleni A.P. Dynamic Modeling of a Wind-DrivenTumbleweed Rover Including Atmospheric Effects // Journal of Spacecraftand Rockets, 2010, vol. 47, no. 3, pp.
493-502[75] Hartl A.E., Mazzoleni A.P. Parametric Study of Spherical Rovers Crossing aValley // Journal of Guidance, Control, and Dynamics, 2008, vol. 31, no. 3,pp. 775-779[76] Hogan F.R., Forbes J.R. Modeling of spherical robots rolling on genericsurfaces // Multibody System Dynamics, 2014, 19 p.[77] Hogan F.R., Forbes J.R., Barfoot T.D. Rolling Stability of a PowerGenerating Tumbleweed Rover // Journal of Spacecraft and Rockets, 2014,12 p.[78] Lee J., Park W. Design and Path Planning for a Spherical Rolling Robot// Proc. ASME 2013 International Mechanical Engineering Congress andExposition, 2013, vol. 4A, IMECE2013-64994, 8 p.[79] Yu T., Sun H., Jia Q., Zhang Y., Zhao W.
Stabilization and Control ofa Spherical Robot on an Inclined Plane // Research Journal of AppliedSciences, Engineering and Technology, 2013, vol. 5, no. 6, pp. 2289-2296[80] Borisov, A.V., Kazakov, A.O., Sataev, I.R., The Reversal and ChaoticAttractor in the Nonholonomic Model of Chaplygin’s Top, Regul. ChaoticDyn., 2014, 19 (6), pp. 718-733.[81] Borisov, A.V., Kazakov, A.O., Sataev, I.R., Regular and Chaotic Attractorsin the Nonholonomic Model of Chapygin’s ball, Rus. J. Nonlin.
Dyn., 2014,10 (3), pp. 361-380.102[82] Borisov, A.V., Kazakov, A.O., Kuznetsov, S.P., Nonlinear dynamics of therattleback: a nonholonomic model, Phys. Usp., 2014, vol. 57, no. 5, pp. 453460[83] Kazakov, A.O., Strange Attractors and Mixed Dynamics in the Problem ofan Unbalanced Rubber Ball Rolling on a Plane, Regul.
Chaotic Dyn., 2013,18 (5), pp. 508-520.[84] Borisov A. V., Mamaev I. S., Kilin A. A., The rolling motion of a ball ona surface: New integrals and hierarchy of dynamics, Regul. Chaotic Dyn.,2002, vol. 7, no. 2, pp. 201–219.[85] Borisov A.V., Mamaev I.S., Strange Attractors in Rattleback Dynamics,Physics-Uspekhi, 2003, Vol. 46, No 4, p.
393-403. Original Russian text:Uspehi Fiz. Nauk, 2003, Vol. 173, No 4, pp. 407-418.[86] Borisov A.V., Kilin A.A., Mamaev I.S., New effects in dynamics ofrattlebacks, Doklady Physics, 2006, Vol. 51, No 5, pp. 272-275. OriginalRussian text: Doklady Akademii Nauk, 2006, Vol. 408, No 2, pp. 192-195[87] А.Н. Каретин. МНК для аппроксимации данных окружностью. Электронный ресурс http://mykaralw.narod.ru/articles/index.html [Дата обращения 9.08.2014][88] J. Bendik, The official Euler’s disk website, http://www.eulerdisk.com,Tangent Toy Co., Sausalito, CA, http://www.tangenttoy.com.[89] P.
Appell. Sur l’integration des equations du mouvement d’un corps pesantde revolution roulant par une arete circulaire sur up plan horizontal; casparculier du cerceau. Rendiconti del circolo matematico di Palermo. V. 14.1900. pp. 1-6.[90] С.А. Чаплыгин О движении тяжёлого тела вращения на горизонтальной плоскости, с.
57-75 // (Труды Отделения физических наук Обществалюбителей естествознания, т. IX, 1897)103[91] D. Korteweg. Extrait d’une lettre a M. Appel. Rendiconti del circolomatematico di Palermo. V. 14. 1900. pp. 7-8.[92] A.V. Borisov, I.S. Mamaev, A.A. Kilin. Dynamic of rolling disk // Regularand Chaotic Dynamics. V. 8. Nr 2. 2003.
pp. 201-212.[93] A. V. Borisov, I. S. Mamaev, I. A. Bizyaev. The hierarchy of dynamics of arigid body rolling without slipping and spinning on a plane and a sphere //Regular and Chaotic Dynamics. V. 18. Issue 3. 2013. pp 277-328.[94] A.V. Borisov, I.S. Mamaev. The rolling motion of a rigid body on a planeand a sphere. Hierarchy of dynamics // Regular and Chaotic Dynamics.
V. 7Issue 2. 2002. pp 177-200.[95] H.K. Moffatt, Euler’s disk and its finite-time singularity // Nature, vol. 404,April 2000, pp. 833-834.[96] Daolin Ma, Caishan Liu, Zhen Zhao, Hongjian Zhang, Rolling friction andenergy dissipation in a spinning disc // Proc. R. Soc.
A: 2014 470 20140191;DOI: 10.1098/rspa.2014.0191.[97] G. van den Engh, P. Nelson, J. Roach, Numismatic gyrations // Nature, vol.408, November 2000, pp. 540.[98] L. Bildsten, Viscous dissipation for Euler’s disk // Phys. Rev. E, vol. 66,2002, 056309, 2 p.[99] Villanueva R., Epstein M. Vibrations of Euler’s disk // Phys.
Rev. E, vol. 71,2005, 066609, 7 p.[100] Kessler P., O’Reilly O.M., The Ringing of Euler’s Disk // Regular andChaotic Dynamics, 2002, V.7, № 1, 49-60.[101] O’Reilly O.M. The Dynamics of Rolling Disks and Sliding Disks // NonlinearDynamics 10: 287-305, 1996[102] McDonald A.J., McDonald K.T., The rolling motion of a disk on ahorizontal plane, Preprint Archive, Los Alamos National Laboratory, arXiv:physics/008227, 2000.104[103] Saux C.Le., Leine R.L., Glocker C., Dynamics of a Rolling Disk in thePresence of Dry Friction // J.Nonlinear Sci., 2005,V.15, 27-61.[104] Caps H.