alimov-11-2003-gdz- (546277), страница 21
Текст из файла (страница 21)
Ответ: x = ± + πn , n ∈ Z.⎨6 36⎪⎩sin 4 x ≠ 0sin 2 x cos x+= 8 cos 2 x ;cos 2 x sin xsin 2 x ⋅ sin x + cos x ⋅ cos 2 xcos x= 8 cos 2 x ;= 8 cos 2 x ;cos 2 x ⋅ sin xcos 2 x ⋅ sin x1cos x⎛⎞− 8 cos x ⎟ = 0 ;− 8 cos 2 x = 0 ; cos x⎜cos 2 x ⋅ sin x⎝ cos 2 x ⋅ sin x⎠2) tg2x + ctgx = 8cos2x;⎧⎡cos x = 0⎪⎛ 1 − 8 cos 2 x ⋅ cos x ⋅ sin x ⎞cos x⎜⎟ = 0 ; ⎨⎢⎣1 − 8 cos 2 x ⋅ cos x ⋅ sin x = 0cos2x⋅sinx⎝⎠⎪⎩cos 2 x ⋅ sin x ≠ 0⎧⎡π⎧⎡π⎪ x = + nπ, n ∈ Z2⎪⎪⎢ x = + nπ, n ∈ Z ⎪⎢⎢2; ⎨⎢.lπ⎨⎢1 − 2 sin 4 x = 0l π⎪⎣⎪⎢⎣ x = (− 1) 24 + 4 , l ∈ Z⎪cos 2 x ⋅ sin x ≠ 0⎩⎪cos 2 x ⋅ sin x ≠ 0⎩ππ lπОтвет: x = + nπ , n ∈ Z.x = (− 1)l+ , l ∈ Z.224 4№ 1386sin 2 3 x − sin 2 xsin 3 x sin x= 2 cos 2 x ;−= 2 cos 2 x ;sin x ⋅ sin 3xsin x sin 3 x(sin3x − sin x)(sin3x + sin x) = 2 cos2x ; 2 sin x ⋅ cos 2 x ⋅ 2 sin 2 x ⋅ cos x = 2 cos 2 x ;sin x ⋅ sin 3xsin x ⋅ sin 3x2 sin 2 2 x ⋅ cos 2 x − 2 cos 2 x ⋅ sin x ⋅ sin 3 x=0;sin x ⋅ sin 3 x()⎧2 cos 2 x sin 2 2 x − sin x ⋅ sin 3x = 0;⎨⎩sin x ⋅ sin 3x ≠ 0()⎧2 cos 2 x ⋅ sin x 4 sin x ⋅ cos 2 x − sin 3 x = 0;⎨⎩sin x ⋅ sin 3 x ≠ 02572cos2x ⋅ sinx(4sinx – 4sin3x + 4sin3x – 3sinx) = 0π nπ⎧⎧2 cos 2 x ⋅ sin 2 x = 0 ⎪⎪ x = 4 + 2 , n ∈ Zπ nπ; ⎨, n ∈ Z..
Ответ: x = +⎨nπxxsin⋅sin3≠04 2⎩⎪ x ≠ nπ , x ≠, n∈Z⎪⎩3№ 1387log2(4cosx+3) log6(4cosx+3)=log2(4cosx+3)+log6(4cosx+3); 4cosx + 3 = a > 0;log2 a log6 a = log2 a + log6 a; log2 a (log6 a–1)=log6 a; log2 a log6 a/6–log6 a = 0;log6 alog6 a / 6 − log6 a = 0 ; log6 a (log6 a/6 – log6 2) = 0;log6 21⎡⎡log6 a = 0⎡a = 1 ⎡4 cos x + 3 = 1 ⎢cos x = −;;;2;⎢log6 a / 12 = 0 ⎢a = 12 ⎢ 4 cos x + 3 = 12 ⎢⎣⎣⎣⎣x ∈ ∅π⎞⎛x = ±⎜ π − ⎟ + 2πn , n ∈ Z.3⎠⎝π⎞⎛Ответ: x = ±⎜ π − ⎟ + 2πn , n ∈ Z.3⎠⎝№ 1388у=х3–6х2+11х–6; 0=х3–6х2+11х–6; х = 1; (х – 1) (х2 – 5х + 6) = 0;(х – 1) (х – 2) (х – 3) = 0; х1=1, х2=2, х3 =3 – точки пересечения с осью Ох.№ 1389⎧2 + m + n + 12 = 0;2х3 + mx2 + nx + 12 = 0; х1 = 1, х2 = –2; ⎨⎩− 16 + 4m − 2n + 12 = 0⎧m = −4⎧m + n = −14 ⎧m + n = −14 ⎧m = −14 − n⎨4m − 2n = 4 ; ⎨2m − n = 2 ; ⎨− 28 − 3n = 2 ; ⎨n = −10 , тогда исходное⎩⎩⎩⎩32уравнение имеет вид: 2х – 4х – 10х + 12 = 0; х1 = 1, х2 = –2, х3 = 3.№ 1390⎧⎪logy x + logx y = 5 / 21) ⎨;⎪⎩x + y = a + a2⎧⎡log y x = 2⎪⎢⎨⎣log y x = 1 / 2 ;⎪2⎩x + y = a + a1⎧⎪logy x + log x = 5 / 2;y⎨⎪ x + y = a + a2⎩⎧⎡ x = y 2⎪⎢;⎨⎢⎣ x = y⎪2⎩⎪ x + y = a + a((⎧⎡ x = y 2⎪⎢;⎨⎢⎣ x = y⎪2⎩⎪ x = a + a − y))⎡a + a 2 − y = y 2 ⎡ y 2 + y − a + a 2 = 0;; ⎢⎢22⎢⎣a + a − y = y ⎢⎣ y + y − a + a = 0y1, 2 =258()⎧⎪2 log 2y x − 5 log y x + 2 = 0;⎨⎪⎩ x + y = a + a 2− 1 ± 1 + 4 a + a2; х1,2 = –у1,2 + а + а22()2⎛ − 1 ± 1 + 4 a + a2 ⎞⎟ ; х = –у + а + а2y3, 4 = ⎜⎜3,43,4⎟⎟2⎜⎝⎠Ответ:1) если а > 0, a ≠ 1, то (а2; а), (а; а2)2) если а < –1, a ≠ –2, то (–а – 1; (а + 1)2), ((а + 1)2; –а – 1)3) если –1 ≤ а ≤ 0, а = 1, а = –2, то решений нет.22⎧ 2b > 0 ; ⎧x2 + y 2 = a2 ;2) ⎨ x + y = a⎨⎩logb x + logb y = 2 b ≠ 1 ⎩logb xy = 2⎧⎛ 2 ⎞222⎪⎜ b ⎟2⎧⎪ x 2 + y 2 = a 2 ⎪⎜ y ⎟ + y = a ⎛ b 2 ⎞⎜ ⎟ + у2 = а2; b4 + у4 = а2у2;⎝ ⎠;;⎨⎨⎜ y ⎟⎪⎩ xy = b 2⎪⎝ ⎠b2=x⎪y⎩у4 – а2у2 + b4 = 0; у2 = t; t2 – а2t + b4 = 0; t1, 2 =а4 – 4b4 ≥ 0; (а2 – 2b2) (а2 + 2b2) ≥ 0.При а2 – 2b2 ≥ 0 и a 2 − a 4 − 4b 4 ≥ 0 ; y = ±a 2 ± a 4 − 4b 4;2a 2 ± a 4 − 4b 4.2№ 1391⎧⎪a 2 − 2 3 a y + x 2 + 2 xy − y 2 − 2 = 0;⎨ 2⎪⎩ x + y 2 − 2 y − cos(xy ) + 11 − 6a + a 2 = 0х2 + (у – 1)2 + (а – 3)2 + (1 – cos(xy)) = 0.Все слагаемые не отрицательны, следовательно: х=0, у=1, а=3,1–cos(xy) = 0, т.е.
при а ≠ 3 решений нет.При а = 3 проверим, является ли решением системы х = 0, у = 1.1 – cos(0 ⋅ 1) = 0 – верно; 9 – 2 ⋅ 3 ⋅ 1 + 0 + 0 – 1 – 2 = 0;3 – 3 = 0 – верно, т.е. х = 0, у = 1 – решение.Ответ: а = 3, х = 0, у = 1. а ≠ 3 решений нет.№ 1392⎧⎪ x y = y x1) ⎨ 3; х, у > 0;⎪⎩ x = y 2⎧⎪ x y = y x;⎨⎪⎩ x = y 2 / 32⎧⎪x y = y y 3;⎨⎪⎩ x = y 2 / 32⎧⎛ 2 1/ 3 ⎞⎪ x y = y y 3 2/3 2у – у = 0; у2/3 ⎜⎝1 − 3 y ⎟⎠ = 0;⎨3⎪⎩ x = y 2 / 32592⎡y = 0⎡y = 0⎛ 3 ⎞92/3⎢ 1/ 3 3 ; ⎢; y ≠ 0; х = у ; х = ⎜ ⎟ , а также (1; 1).⎢y = 3 3=⎢y⎝2⎠2 ⎣⎢⎣221⎞⎛⎜⎛ 3 ⎞ 9 ⎛ 3 ⎞3 ⎟Ответ: ⎜ ⎜ ⎟ ; ⎜ ⎟ ⎟ , (1; 1).⎜⎝ 2 ⎠ ⎝ 2 ⎠ ⎟⎠⎝⎧⎪x2) ⎨⎪⎩ yyy1⎧ x y1 / 2 = y ⎧ y⎪=y⎪y 4 = y⎪; х, у > 0; ⎨; ⎨;11y4y⎪x = y 4⎪=x4⎩⎪⎩ x = y1у = 1; у = 4; х = 2, а также (1; 1).4Ответ: (1; 1), (2; 4).⎧⎪ 2 sin x = sin y3) ⎨.⎪⎩ 2 cos x = 3 cos yСложим уравнения системы:2 sinx + 2 cosx = siny + 3 cosy;⎛ 2⎞⎛1⎞π⎞π⎞32⎛⎛2⎜sin x +cos x ⎟ = 2⎜ sin y +cos y ⎟ ; sin ⎜ x + ⎟ = sin ⎜ y + ⎟ ;⎜ 2⎟⎜2⎟2243⎠⎝⎠⎝⎝⎠⎝⎠πππx + + 2πn = y + , n ∈ Z; x =+ y + 2πn , n ∈ Z.4312Вычтем уравнения системы, получим:π7x− y+x+ y− π12 = 0 , откуда12 ⋅ cos2 sin2235x = π + 2πn , n ∈ Z; y = π + πn , n ∈ Z.4635Ответ: x = π + 2πn , n ∈ Z; y = π + πn , n ∈ Z.461⎧1⎧x− y = −⎪⎪ x = y − 3⎪⎪34) ⎨; ⎨;11⎞⎛⎪cos 2 πx − sin 2 πy = 1 ⎪cos 2 π⎜ y − ⎟ − sin 2 πy =23⎠2 ⎪⎩⎩⎪⎝2π⎞1 ⎛13 ⎞⎟1cos ⎜ πy − ⎟ − sin 2 πy = ; ⎜ cos πy ⋅ + sin πy ⋅− sin 2 πy = ;⎜⎟32222⎝⎠⎝⎠2⎛2⎛1⎞⎜ cos πy + 3 sin πy ⎟ − sin 2 πy = 1 ;⎜2⎟22⎝⎠2601331cos 2 πy +cos πy ⋅ sin πy + sin 2 πy − sin 2 πy = ;4242cos 2 πy + 2 3 cos πy ⋅ sin πy + 3 sin 2 πy − 4 sin 2 πy = 2 ;cos 2 πy − sin 2 πy + 2 3 cos πy ⋅ sin πy = 2 ; cos 2πy + 3 sin 2πy = 2 ;ππ13cos 2πy +sin 2πy = 1 ; sin cos 2πy + cos sin 2πy = 1 ;662211ππ⎛π⎞sin ⎜ + 2πy ⎟ = 1 ;+ 2πy = + 2πn , n ∈ Z; y = + n, x = − .6662⎝6⎠1⎛ 1⎞Ответ: ⎜ − + n, + n ⎟ , n ∈ Z.6⎝ 6⎠1⎧⎪cos x sin x =;5) ⎨2⎪⎩sin 2 x + sin 2 y = 0⎧cos x ⋅ sin y = 1 / 2⎪⎨⎡sin (x + y ) = 0 ;⎪⎩⎢⎣cos(x − y ) = 01⎧⎪cos x sin x =;⎨2⎪⎩2 sin (x + y )cos(x − y ) = 0⎧cos x ⋅ sin y = 1 / 2⎪⎨⎡ x + y = nπ, n ∈ Z ;⎪⎩⎢⎣ x − y = lπ, l ∈ Z11(sin(y – x) + sin(y + x)) = ; sin(y – x) + sin(y + x) = 1.22а) x + y = nπ, n ∈ Z; sin(nπ – 2x) = 1;πnππnπ – 2x = + 2kπ, n, k ∈ Z; x = − − kπ +;242πnππnπy = nπ + + kπ −, n, k ∈ Z; y = + kπ +, n, k ∈ Z;4242nπ πnπ ⎞⎛ π; + kπ +⎜ − − kπ +⎟ , n, k ∈ Z.2 42 ⎠⎝ 4б) x – y = nπ, n∈ Z; sin(y + x) = 1; sin(2y + nπ) = 1;ππ2 y + nπ = + 2πk , k, n ∈ Z; 2 y = + 2πk − nπ , k, n ∈ Z;22πnππnπ, n, k ∈ Z; x = + πk +, n, k ∈ Z;y = + πk −4242nπ πnπ ⎞⎛ πОтвет: ⎜ ± ± kπ +; + kπ ±⎟ , n, k ∈ Z.4242 ⎠⎝№ 1393⎧6 sin x ⋅ cos y + 2 cos x ⋅ sin y = −3⎨5 sin x ⋅ cos y − 3 cos x ⋅ sin y = 1⎩Обозначим sinx ⋅ cosy за u, cosx ⋅ siny за v, тогда система примет вид:261−3 − 2v⎧⎧6u + 2v = −3 ⎪u =; 5(–3 – 2v) – 18v = 6; –15 – 10v – 18v = 6;⎨5u − 3v = 1 ; ⎨6⎩⎪⎩5u − 3v = 13−3+32 = −1 ;–28v = 21; v = – ; u =4641⎧⎪⎪sin x ⋅ cos y = − 4 ⎧4 sin x ⋅ cos y = −1 ⎧2(sin (x − y ) + sin (x + y )) = −1; ⎨; ⎨;⎨( ( ) ( ))⎪cos x ⋅ sin y = − 3 ⎩4 cos x ⋅ sin y = −3 ⎩2 sin x − y + sin x + y = −3⎪⎩41π4sin(x – y) = 2; sin(x – y) = ; x – y = (− 1)k + kπ , k ∈ Z;26k πx = y + (− 1)+ kπ , k ∈ Z; 2(sin(x – y) + sin(x + y)) = –1;6π⎛⎞2sin(x – y) + 2sin(x + y) = –1; 1 + 2 sin ⎜ 2 y + (− 1)k + kπ ⎟ = −1 ;6⎝⎠πππ⎛⎞sin ⎜ 2 y + (− 1)k + kπ ⎟ = −1 ; 2 y + (− 1)k + kπ = − + 2πn ;662⎝⎠πkπk +1 π, k, n ∈ Z;y = − + (− 1)+ πn −4122πππkπx = − − (− 1)k+ πn −+ (− 1)k + kπ , k, n ∈ Z;41226πkπk π, k, n ∈ Z.x = − + (− 1)+ πn +4122ππkπππkπОтвет: x = − + (− 1)k + πn +; y = − + (− 1)k +1 + πn −, k, n ∈ Z.41224122№ 1394log 5 y⎧⎪3log x 2 = y log 5 y ⎧; ⎪⎨ log x 2 = log 3 y log 7 x ;⎨ log y 3⎪⎩ 2= x log 7 x ⎪⎩ log y 3 = log 2 x1⎧⎧ 1⎪⎪ log x = log 5 y ⋅ log 3 y ⎪⎪log 2 x = log y ⋅ log y352; ⎨;⎨ 11⎪= log 7 x ⋅ log 2 x= log 7 x ⋅ log 2 x ⎪⎪⎩ log 3 y⎪⎩ log 3 y1⎧⎪ x = 2 log 3 y⋅log 5 y⎪;11⎨⎪ 1log 3 y log 5 ylog 3 y log 5 y⋅ log 2 2⎪ log y = log7 2⎩ 32621⎧1⎧⎪ x = 2 log 3 y⋅log 5 y⎪⎪log 3 y ⋅log 5 y; ⎨x = 2;⎨ 1log7 2⎪log 2 y ⋅ log y = log 2⎪=2237⎩ 5⎩⎪ log3 y log3 y ⋅ log5 y1⎧⎪⎪x = 2 log3 y⋅log5 y;⎨log y⎪log52 y ⋅ 5 = log7 2log5 3⎪⎩1⎧1⎧2⎪⎪x = 2 log3 y⋅log5 y⎪ x = 2 (log 5 3⋅log 7 2 ) 3 log 3; ⎨5 .⎨1 ⎪1⎪()log3log273⎩log5 y = (log5 3log7 2)3 ⎪⎩ y = 5 5№ 13951) x lg2x −3 lg x +1> 1000; x > 0, x ≠ 1; lg x x lglg 2 x − 3 lg x + 1 >2x −3 lg x +1> lg x 1000 ;13; lg 2 x − 3 lg x + 1 >.log103 xlg xОбозначим lgx через а, тогда неравенство примет вид:а2 – 3а +1 >3 a 3 − 3a 2 + a − 3;>0;aa()(a − 3) a 2 + 1 > 0 ;a 2 (a − 3) + (a − 3)> 0;aa⎡lg x < 0 ⎡ x < 1;а ∈ (–∞; 0) U (3; +∞), т.е.
⎢⎣lg x > 3 ⎢⎣ x > 1000Ответ: х ∈ (0; 1) U (1000; +∞).22) 3lg x + 2 < 3lg x +5 − 2 ; х > 0; 3lgx + 2 – 32 lgx + 5 + 2 < 03lgx + 2 – 32 (lgx + 2) ⋅ 3 + 2 < 0; 3lgx + 2 = tt > 0;3t2 – t – 2 > 0;–3t2 + t + 2 < 0;1+ 52D = 1 + 24 = 25;t1 ==1;t2 = – ;63t > 1 3lgx + 2 > 1 + 30; lgx + 2 > 0 lgx > –2 = lg 0,01; x > 0,01.№ 1396log|2x + 2| (1 – 9x) < log|2x + 2| (1 + 3x) + log|2x + 2| ⎛⎜ 5 + 3x −1 ⎞⎟ ;⎝9⎠311) |2x + 2| > 1, т.е. x < – , x > – ;22(1 − 3 )(1 + 3 ) < logxlog|2 x + 2|xx5 + 3x +1⎛5⎞+ 3x −1 ⎟ ; 1 − 3x <;9⎝9⎠|2 x + 2| ⎜1+ 34 < 3 ⋅ 3 + 9 ⋅ 3х; 9 – 3х + 2 < 5 + 3x + 1; 4 < 12 ⋅ 3х; 3х + 1 > 30; x > –1;х263⎧ x > −1⎪⎡21⎪⎢ x < −⎨3 ;x>– .⎢2⎪1⎪⎢⎢ x > −2⎩⎣2) |2x + 2| < 1, т.е. –31< x <– ;22log|2x + 2| (1 – 9x) < log|2x + 2| (1 – 3x) + log|2x + 2| ⎛⎜ 5 + 3x −1 ⎞⎟ ;⎝9⎠⎧ x < −1x +15+33⎪; x < –1; ⎨ 31 – 3x >1 ; – < x < –1.−<<−x92⎪⎩ 225 x–1+3 , т.е.