Главная » Просмотр файлов » Е.Е. Тыртышников - Матричный анализ и линейная алгебра

Е.Е. Тыртышников - Матричный анализ и линейная алгебра (1112313), страница 32

Файл №1112313 Е.Е. Тыртышников - Матричный анализ и линейная алгебра (Е.Е. Тыртышников - Матричный анализ и линейная алгебра) 32 страницаЕ.Е. Тыртышников - Матричный анализ и линейная алгебра (1112313) страница 322019-04-25СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 32)

Ïóñòü p ≥ 1, x1 , . . . , xn è y1 , . . . , yn ïðîèçâîëüíûåêîìïëåêñíûå ÷èñëà. ÒîãäànX!1/pp|xi + yi |nX≤i=1!1/pp|xi |nX+i=1!1/pp|yi |.i=1Äîêàçàòåëüñòâî. Ïðè p = 1 íåðàâåíñòâî ïðîâåðÿåòñÿ î÷åâèäíûì îáðàçîì.  ñëó÷àåp > 1 èìååì, î÷åâèäíî,nXp|xi + yi | ≤i=1nXp−1|xi + yi ||xi + yi | ≤i=1nXp−1|xi | |xi + yi |+i=1nX|yi | |xi + yi |p−1 .i=1Äëÿ êàæäîé èç ñóìì ñïðàâà ïðèìåíèì íåðàâåíñòâî Ãåëüäåðà, âçÿâ q = p/(p − 1)1 1+ = 1. Ïîëó÷àåìp qnX|xi + yi |p ≤ i=1nX!1/p|xi |p+i=1nX!1/p |yi |pi=1!1/q|xi + yi |(p−1)qi=12Îñòàåòñÿ çàìåòèòü, ÷òî (p − 1)q = p è 1 − 1/q = 1/p.22.4nX⇒Íîðìû ÃåëüäåðàÏóñòü x = [x1 , .

. . , xn ]> ∈ Cn . Ïðè p ≥ 1 ïîëîæèì||x||p =nX!1/p|xi |p.i=1Çàìåòèì òàêæå, ÷òî ïðè ôèêñèðîâàííîì x âåëè÷èíà ||x||p ïðè p → ∞ èìååò ïðåäåë,ðàâíûé max |xi |. Ïîýòîìó ðàçóìíî ïðèíÿòü îáîçíà÷åíèå1≤i≤n||x||∞ = max |xi |.1≤i≤n146Ëåêöèÿ 22Âåëè÷èíû ||x||p íàçûâàþòñÿ p-íîðìàìè èëè íîðìàìè Ãåëüäåðà.Íåðàâåíñòâà Ãåëüäåðà è Ìèíêîâñêîãî ñîõðàíÿþò ñèëó ïðè p = ∞ (â ýòîì ñëó÷àåq = 1). Äëÿ äîêàçàòåëüñòâà äîñòàòî÷íî ïåðåéòè ê ïðåäåëó ïðè p → ∞.Òåîðåìà. Ïðè ëþáîì p ≥ 1, âêëþ÷àÿ p = ∞, âåëè÷èíà ||x||p ÿâëÿåòñÿ íîðìîé íà Cn .Äîêàçàòåëüñòâî.

Ñâîéñòâà (1) è (2) íîðìû î÷åâèäíû. Íåðàâåíñòâî òðåóãîëüíèêà åñòüíå ÷òî èíîå, êàê íåðàâåíñòâî Ìèíêîâñêîãî. 2Çàäà÷à.âîìRn êàê ôóíêöèè êîîðäèíàò âåêòîðà x = [x1 , . . . , xn ]> îáëàäàþò ñâîéñòf (x1 , . . . , xn ) = f (|x1 |, . . . , |xn |). Ïðèâåäèòå ïðèìåð íîðìû, êîòîðàÿ ýòèì ñâîéñòâîì íå îáëàäàåò.22.5Ìíîãèå íîðìû íàÇà÷åì íóæíû íîðìû?Ïðåæäå âñåãî, ýòî óäîáíûé èíñòðóìåíò äëÿ èçó÷åíèÿ ïðåäåëîâ â ëèíåéíîì ïðîñòðàíñòâå.Ïîñëåäîâàòåëüíîñòü âåêòîðîâ xk ∈ V íàçûâàåòñÿ ñõîäÿùåéñÿ ê âåêòîðó x ∈ V , åñëè÷èñëîâàÿ ïîñëåäîâàòåëüíîñòü ||xk −x|| ñõîäèòñÿ ê íóëþ ïðè k → ∞. Âåêòîð x íàçûâàåòñÿïðåäåëîì ïîñëåäîâàòåëüíîñòè xk .

Îáîçíà÷åíèÿ: x = lim xk èëè xk → x ïðè x → ∞.k→∞Ïîñëåäîâàòåëüíîñòü, ñõîäÿùàÿñÿ ê êàêîìó-íèáóäü âåêòîðó, íàçûâàåòñÿ ïðîñòî ñõîäÿùåéñÿ. Ýòî îïðàâäàíî, ïîñêîëüêó äâóõ ðàçëè÷íûõ ïðåäåëîâ áûòü òå ìîæåò. Åñëèxk → x è xk → y , òî||x − y|| = ||(x − xk ) − (y − xk || ≤ ||x − xk || + ||y − xk || → 0 ⇒ x = y.

2 êîíå÷íîìåðíîì ïðîñòðàíñòâå V ïðè èçó÷åíèè ñõîäèìîñòè ìîæíî, â ïðèíöèïå,îáîéòèñü è áåç íîðì. Ôèêñèðîâàâ êàêîé-íèáóäü áàçèñ e1 , . . . , en ∈ V , ìû ìîãëè áûðàññìîòðåòü ðàçëîæåíèÿnXkx =xki eii=1è íàçûâàòü ïîñëåäîâàòåëüíîñòü âåêòîðîâ xk ñõîäÿùåéñÿ, åñëè ñõîäÿòñÿ êîîðäèíàòíûåïîñëåäîâàòåëüíîñòè xki ïðè âñåõ i. Òàêîå ïîíÿòèå ñõîäèìîñòè íå áóäåò çàâèñåòü îò âûáîðà áàçèñà (äîêàæèòå!). Ëåãêî âèäåòü òàêæå, ÷òî èç ïîêîîðäèíàòíîé ñõîäèìîñòè âêîíå÷íîìåðíîì ïðîñòðàíñòâå âûòåêàåòñõîäèìîñòü ïî ëþáîé íîðìå. Äåéñòâèòåëüíî,Pkïóñòü xi → xi . Òîãäà, âçÿâ x =xi ei , ïîëó÷àåìik||x − x|| ≤nX|xki − xi | ||ei ||.2i=1Áîëåå òîãî, èìååò ìåñòî è ìåíåå î÷åâèäíûé ôàêò: â êîíå÷íîìåðíîì ïðîñòðàíñòâå èçñõîäèìîñòè ïî ëþáîé íîðìå âûòåêàåò ïîêîîðäèíàòíàÿ ñõîäèìîñòü.

Ìû ñêîðî ýòî äîêàæåì.Òåì íå ìåíåå, äàæå â êîíå÷íîìåðíîì ïðîñòðàíñòâå èññëåäîâàòü ñõîäèìîñòü ñ ïîìîùüþ íîðì î÷åíü óäîáíî: âñå ñâîäèòñÿ ê èçó÷åíèþ ëèøü îäíîé ÷èñëîâîé ïîñëåäîâàòåëüíîñòè ||xk − x||. Ýòî òåì áîëåå âàæíî, êîãäà ïðîñòðàíñòâî áåñêîíå÷íîìåðíî!Å. Å. Òûðòûøíèêîâ22.6147Íîðìû â áåñêîíå÷íîìåðíîì ïðîñòðàíñòâåÏóñòü C[a, b] ëèíåéíîå ïðîñòðàíñòâî ôóíêöèé, íåïðåðûâíûõ íà îòðåçêå[a, b]. Äëÿ ôóíêöèè f ∈ C[a, b] íàèáîëåå ÷àñòî èñïîëüçóåòñÿ íîðìàÏÐÈÌÅÐ 1.||f ||C = max |f (x)|,a≤x≤bíàçûâàåìàÿ C -íîðìîé (èíîãäà òàêæå ðàâíîìåðíîé èëè ÷åáûøåâñêîé 1 ).Ïóñòü C 1 [a, b] ëèíåéíîå ïðîñòðàíñòâî ôóíêöèé, íåïðåðûâíûõ íà îòðåçêå [a, b] âìåñòå ñ ïåðâîé ïðîèçâîäíîé 2 .

 äàííîì ñëó÷àå íîðìó ìîæíî ââåñòè, íàïðèìåð,òàê:||f ||C 1 = max (|f (x)| + |f 0 (x)|).ÏÐÈÌÅÐ 2.a≤x≤bÇàìåòèì, ÷òî ñõîäèìîñòü ïîñëåäîâàòåëüíîñòè ôóíêöèé èç C 1 [a, b] ïî íîðìå C 1 âëå÷åò çà ñîáîé ñõîäèìîñòü ïî íîðìå C . Îáðàòíîå, îäíàêî, íå âåðíî: ïîñëåäîâàòåëüíîñòüôóíêöèésin kxf k (x) = √kïðèíàäëåæèò C 1 [a, b] è ñõîäèòñÿ ïî íîðìå C ê íóëþ, íî íå ñõîäèòñÿ ïî íîðìå C 1 , òàêêàê íå ÿâëÿåòñÿ îãðàíè÷åííîé ïî ýòîé íîðìå.Òàêèì îáðàçîì, â áåñêîíå÷íîìåðíûõ ïðîñòðàíñòâàõ ðàçíûå íîðìû îïðåäåëÿþò, âîîáùå ãîâîðÿ, ðàçíûå òèïû ñõîäèìîñòè.  ýòîì îòíîøåíèè êîíå÷íîìåðíûå ïðîñòðàíñòâàîòëè÷àþòñÿ ïðèíöèïèàëüíî: â íèõ ñõîäèìîñòü ïî êàêîé-ëèáî íîðìå ðàâíîñèëüíà ñõîäèìîñòè ïî ëþáîé äðóãîé íîðìå ýòî ôóíäàìåíòàëüíûé ôàêò, êîòîðûé ñêîðî áóäåò äîêàçàí.

Îí âðîäå áû îçíà÷àåò, ÷òî â êîíå÷íîìåðíûõ ïðîñòðàíñòâàõ ìîæíî îãðàíè÷èòüñÿèçó÷åíèåì êàêîé-íèáóäü îäíîé íîðìû. Òåì íå ìåíåå, ýòî íå òàê!  îãðîìíîì ÷èñëå âîïðîñîâ êîíå÷íîìåðíûå ïðîñòðàíñòâà âîçíèêàþò êàê ïîäïðîñòðàíñòâà áåñêîíå÷íîìåðíîãî íîðìèðîâàííîãî ïðîñòðàíñòâà. Ïîýòîìó íîðìû â íèõ äîëæíû ïîðîæäàòüñÿ íîðìîéñîîòâåòñòâóþùåãî áåñêîíå÷íîìåðíîãî ïðîñòðàíñòâà. À ìû òîëüêî ÷òî âûÿñíèëè, ÷òîäëÿ áåñêîíå÷íîìåðíûõ ïðîñòðàíñòâ ðàçíûå íîðìû ìîãóò îòëè÷àòüñÿ ñóùåñòâåííûì îáðàçîì.Çàäà÷à.íîðìå22.7C1Äîêàæèòå, ÷òî ïîñëåäîâàòåëüíîñòü ôóíêöèéf k (x) = sin kx/kíå ÿâëÿåòñÿ ñõîäÿùåéñÿ ïî.Ìåòðè÷åñêîå ïðîñòðàíñòâî ïîíÿòèè ïðåäåëà àêñèîìû ëèíåéíîãî ïðîñòðàíñòâà èñïîëüçóþòñÿ, íà ñàìîì äåëå, íåî÷åíü ñóùåñòâåííûì îáðàçîì íîðìà ðàçíîñòè äâóõ âåêòîðîâ ëåãêî çàìåíÿåòñÿ áîëååîáùèì ïîíÿòèåì ðàññòîÿíèÿ ìåæäó äâóìÿ âåêòîðàìè.Ïóñòü M íåïóñòîå ìíîæåñòâî è ρ(x, y) âåùåñòâåííàÿ ôóíêöèÿ îò ýëåìåíòîâx, y ∈ M , îáëàäàþùàÿ ñëåäóþùèìè ñâîéñòâàìè:(1) ρ(x, y) ≥ 0 ∀ x, y ∈ M,ρ(x, y) = 0 ⇔ x = y ;(2) ρ(x, y) = ρ(y, x) ∀ x, y ∈ M ;1  ÷åñòü çíàìåíèòîãî ðóññêîãî ìàòåìàòèêà Ïàôíóòèÿ Ëüâîâè÷à ×åáûøåâà.2 ×òîáû ðàññìàòðèâàòü f 0 (x) â òî÷êàõ a è b, ìîæíî ñ÷èòàòü ôóíêöèþ f (x) îïðåäåëåííîé è äèôôåðåíöèðóåìîé íà áîëåå øèðîêîì èíòåðâàëå, íàêðûâàþùåì[a, b].148Ëåêöèÿ 22(3) ρ(x, y) ≤ ρ(x, z) + ρ(z, y) ∀ x, y, z ∈ M . òàêèõ ñëó÷àÿõ M íàçûâàåòñÿ ìåòðè÷åñêèì ïðîñòðàíñòâîì, à ρ(x, y) ðàññòîÿíèåììåæäó ýëåìåíòàìè x è y .Ëþáîå íîðìèðîâàííîå ïðîñòðàíñòâî ÿâëÿåòñÿ ìåòðè÷åñêèì ïðîñòðàíñòâîì ñ ðàññòîÿíèåìρ(x, y) = ||x − y||.Îäíàêî, ìåòðè÷åñêîå ïðîñòðàíñòâî â îáùåì ñëó÷àå íå ïðåäïîëàãàåò íàëè÷èÿ êàêèõëèáî îïåðàöèé íàä åãî ýëåìåíòàìè.

Íàïðèìåð, ïðîèçâîëüíîå íåïóñòîå ìíîæåñòâî Máóäåò ìåòðè÷åñêèì ïðîñòðàíñòâîì, åñëè ρ(x, y) = 0 ïðè x = y è ρ(x, y) = 1 ïðè x 6= y .22.8Ïðåäåëû è ïîëíîòàÏóñòü M ìåòðè÷åñêîå ïðîñòðàíñòâî. Ïîñëåäîâàòåëüíîñòü ýëåìåíòîâ xk ∈ M íàçûâàåòñÿ ñõîäÿùåéñÿ â M , åñëè ñóùåñòâóåò ýëåìåíò x ∈ M òàêîé, ÷òî ÷èñëîâàÿ ïîñëåäîâàòåëüíîñòü ρ(xk , x) ñõîäèòñÿ ê íóëþ ïðè k → ∞. Êàê è â íîðìèðîâàííîì ïðîñòðàíñòâå,äâóõ ðàçíûõ ïðåäåëîâ áûòü íå ìîæåò: åñëè xk → x è xk → y , òîρ(x, y) ≤ ρ(x, xk ) + ρ(xk , y) → 0⇒x = y.Ïîñëåäîâàòåëüíîñòü xk ∈ M íàçûâàåòñÿ ôóíäàìåíòàëüíîé èëè ïîñëåäîâàòåëüíîñòüþ Êîøè, 3 åñëè äëÿ ëþáîãî ε > 0 ñóùåñòâóåò íîìåð N = N (ε) òàêîé, ÷òî ïðèk, l > N âûïîëíÿåòñÿ íåðàâåíñòâî ρ(xk , xl ) < ε.Èç íåðàâåíñòâà ρ(xk , xl ) ≤ ρ(xk , x) + ρ(x, xl ) î÷åâèäíî, ÷òî ëþáàÿ ñõîäÿùàÿñÿ ïîñëåäîâàòåëüíîñòü ÿâëÿåòñÿ ïîñëåäîâàòåëüíîñòüþ Êîøè.

Îáðàòíîå â îáùåì ñëó÷àåíå âåðíî. Íàïðèìåð, ëþáîé èíòåðâàë M = (a, b) âåùåñòâåííîé îñè ìîæíî ðàññìàòðèâàòü êàê ìåòðè÷åñêîå ïðîñòðàíñòâî ñ ðàññòîÿíèåì ρ(x, y) = |x − y|. Ïîñëåäîâàòåëüíîñòüxk = a + (b − a)/k ÿâëÿåòñÿ ôóíäàìåíòàëüíîé, íî íå ìîæåò ñõîäèòüñÿ íè ê êàêîìóýëåìåíòó èç M (åå ïðåäåëîì äîëæíî áû áûòü ÷èñëî a, íî a ∈/ M ).Ìåòðè÷åñêîå ïðîñòðàíñòâî íàçûâàåòñÿ ïîëíûì, åñëè â íåì ëþáàÿ ôóíäàìåíòàëüíàÿïîñëåäîâàòåëüíîñòü ÿâëÿåòñÿ ñõîäÿùåéñÿ. íà÷àëüíûõ êóðñàõ ìàòåìàòè÷åñêîãî àíàëèçà îáû÷íî äîêàçûâàåòñÿ, ÷òî ôóíäàìåíòàëüíûå ïîñëåäîâàòåëüíîñòè ÷èñåë èç R ÿâëÿþòñÿ ñõîäÿùèìèñÿ â R òàêèì îáðàçîì,ìåòðè÷åñêîå ïðîñòðàíñòâî R ñ ðàññòîÿíèåì ρ(x, y) = |x − y| ÿâëÿåòñÿ ïîëíûì.Âñå ïîíÿòèÿ è ôàêòû, ïîëó÷åííûå äëÿ ìåòðè÷åñêèõ ïðîñòðàíñòâ, ïåðåíîñÿòñÿ íàïðîèçâîëüíûå íîðìèðîâàííûå ïðîñòðàíñòâà.

Ïðè ýòîì âñåãäà ïðåäïîëàãàåòñÿ, ÷òî ðàññòîÿíèå â íèõ ââîäèòñÿ ñ ïîìîùüþ íîðìû: ρ(x, y) = ||x − y||. Ïîëíîå íîðìèðîâàííîåïðîñòðàíñòâî íàçûâàåòñÿ òàêæå áàíàõîâûì. 4Çàäà÷à.ïðîñòðàíñòâåÄîêàæèòå, ÷òî ôóíêöèÿR.ρ(x, y) = |x − y|/(1 + |x − y|)çàäàåò ðàññòîÿíèå â âåùåñòâåííîìÏîðîæäàåòñÿ ëè îíî êàêîé-ëèáî íîðìîé? Áóäåò ëè ïðîñòðàíñòâî ïîëíûì?3 Åùå îäíî (êðàñèâîå, íî ðåäêî èñïîëüçóåìîå) íàçâàíèå ñõîäÿùàÿñÿ â ñåáå.4  ÷åñòü ïîëüñêîãî ìàòåìàòèêà, ïðîôåññîðà Ëüâîâñêîãî óíèâåðñèòåòà Ñòåôàíà Áàíàõà.Ëåêöèÿ 2323.1Ìíîæåñòâà â ìåòðè÷åñêîì ïðîñòðàíñòâåÏóñòü M ìåòðè÷åñêîå ïðîñòðàíñòâî, a ∈ M è r > 0.

ÌíîæåñòâàM (a, r) = {x ∈ M : ρ(a, x) < r},M (a, r) = {x ∈ M : ρ(a, x) ≤ r}.íàçûâàþòñÿ îòêðûòûì øàðîì è çàìêíóòûì øàðîì ðàäèóñà r ñ öåíòðîì â òî÷êå a.Ïóñòü S êàêîå-òî ìíîæåñòâî òî÷åê â ìåòðè÷åñêîì ïðîñòðàíñòâå M . Ìíîæåñòâî Síàçûâàåòñÿ îãðàíè÷åííûì, åñëè îíî öåëèêîì ñîäåðæèòñÿ â íåêîòîðîì øàðå.Òî÷êà a ∈ S íàçûâàåòñÿ âíóòðåííåé äëÿ S , åñëè îíà ñîäåðæèòñÿ â S âìåñòå ñ íåêîòîðûì îòêðûòûì øàðîì. Ìíîæåñòâî S íàçûâàåòñÿ îòêðûòûì â M , åñëè ëþáàÿ åãîòî÷êà ÿâëÿåòñÿ âíóòðåííåé.

Ïóñòîå ìíîæåñòâî ïî îïðåäåëåíèþ ñ÷èòàåòñÿ îòêðûòûì.Ïóñòü x ∈ M è ñóùåñòâóåò ïîñëåäîâàòåëüíîñòü òî÷åê xk ∈ S , ñõîäÿùàÿñÿ ê x. Âýòîì ñëó÷àå x íàçûâàåòñÿ òî÷êîé ïðèêîñíîâåíèÿ äëÿ S . Åñëè xk 6= x äëÿ âñåõ k , òî xíàçûâàåòñÿ ïðåäåëüíîé òî÷êîé äëÿ S . Î÷åâèäíî, ëþáàÿ òî÷êà ïðèêîñíîâåíèÿ, íå ïðèíàäëåæàùàÿ ìíîæåñòâó S , ÿâëÿåòñÿ äëÿ íåãî ïðåäåëüíîé.Çàìûêàíèåì ìíîæåñòâà S íàçûâàåòñÿ îíî ñàìî ïëþñ âñå åãî ïðåäåëüíûå òî÷êè.Îáîçíà÷åíèå: [S]. Ìíîæåñòâî S íàçûâàåòñÿ çàìêíóòûì, åñëè îíî ñîäåðæèò âñå ñâîèïðåäåëüíûå òî÷êè: [S] = S . Íåñëîæíî ïðîâåðèòü, ÷òî S çàìêíóòî â òîì è òîëüêî â òîìñëó÷àå, êîãäà äîïîëíèòåëüíîå â M ìíîæåñòâî O = M \S ÿâëÿåòñÿ îòêðûòûì.Çàäà÷à.Âñåãäà ëè çàìûêàíèå îòêðûòîãî øàðà ñîâïàäàåò ñ çàìêíóòûì øàðîì ñ òåì æå öåíòðîìè ðàäèóñîì?Çàäà÷à.

Характеристики

Тип файла
PDF-файл
Размер
1,77 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6418
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее