Главная » Просмотр файлов » Е.Е. Тыртышников - Матричный анализ и линейная алгебра

Е.Е. Тыртышников - Матричный анализ и линейная алгебра (1112313), страница 35

Файл №1112313 Е.Е. Тыртышников - Матричный анализ и линейная алгебра (Е.Е. Тыртышников - Матричный анализ и линейная алгебра) 35 страницаЕ.Е. Тыртышников - Матричный анализ и линейная алгебра (1112313) страница 352019-04-25СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 35)

Âåêòîð x ∈ V íàçûâàåòñÿ îðòîãîíàëüíûì ìíîæåñòâó L, åñëè(x, y) = 0 äëÿ âñåõ y ∈ L. Îáîçíà÷åíèå: x⊥L. Ïî îïðåäåëåíèþ, ìíîæåñòâà L è Mîðòîãîíàëüíû, åñëè (x, y) = 0 äëÿ ëþáûõ x ∈ L è y ∈ M . Îáîçíà÷åíèå: L⊥M .Ìíîæåñòâî M âñåõ âåêòîðîâ èç V , êàæäûé èç êîòîðûõ îðòîãîíàëåí çàäàííîìó ìíîæåñòâó L, íàçûâàåòñÿ åãî îðòîãîíàëüíûì äîïîëíåíèåì â ïðîñòðàíñòâå V . Îáîçíà÷åíèå: M = L⊥ .Óòâåðæäåíèå. Äëÿ ëþáîãî ìíîæåñòâà L åãî îðòîãîíàëüíîå äîïîëíåíèå L⊥ ÿâëÿåòñÿïîäïðîñòðàíñòâîì. Ïðè ýòîì L ⊂ (L⊥ )⊥ .Äîêàçàòåëüñòâî.

Ïóñòü x, y ∈ L⊥ . Òîãäà (x, z) = (y, z) = 0 ∀ z ∈ L ⇒ (αx+βy, z) =α(x, z) + β(y, z) = 0 ∀ z ∈ L ⇒ αx + βy ∈ L⊥ .Ïî îïðåäåëåíèþ, ìíîæåñòâî (L⊥ )⊥ ñîäåðæèò âñå âåêòîðû, îðòîãîíàëüíûå L⊥ , à çíà÷èò, è âñå âåêòîðû èç ìíîæåñòâà L. 224.8Îðòîãîíàëüíàÿ ñóììà ïîäïðîñòðàíñòâÍàïîìíèì, ÷òî ñóììîé ïîäïðîñòðàíñòâ L1 , L2 , . . . , Lm íàçûâàåòñÿ ìíîæåñòâî L âñåõâåêòîðîâ âèäà x = x1 + x2 + . . . + xm , ãäå xi ∈ Li äëÿ âñåõ i. Ýëåìåíòàðíî ïðîâåðÿåòñÿ,÷òî L ïîäïðîñòðàíñòâî. Îáîçíà÷åíèå: L = L1 + .

. . + Lm .Íàïîìíèì òàêæå, ÷òî L íàçûâàåòñÿ ïðÿìîé ñóììîé, åñëè ïîäïðîñòðàíñòâà Li íåíóëåâûå è êàæäûé âåêòîð x ∈ L èìååò åäèíñòâåííîå ðàçëîæåíèå âèäà x = x1 + . . . + xm ,ãäå xi ∈ Li (åñëè x = x01 + . . . + x0m è x0i ∈ Li ∀ i, òî íåïðåìåííî x0i = xi ∀ i).Ñóììà L = L1 + . . . + Lm íåíóëåâûõ ïîäïðîñòðàíñòâ íàçûâàåòñÿ îðòîãîíàëüíîéñóììîé, åñëè Li ⊥Lj ïðè i 6= j . Îáîçíà÷åíèå: L = L1 ⊕ . . . ⊕ Lm .Óòâåðæäåíèå. Îðòîãîíàëüíàÿ ñóììà ïîäïðîñòðàíñòâ L = L1 ⊕ . . .

⊕ Lm ÿâëÿåòñÿïðÿìîé ñóììîé. Êðîìå òîãî, åñëè xi ∈ Li , òî|x1 + . . . + xm |2 = |x1 |2 + . . . + |xm |2 .(∗)Äîêàçàòåëüñòâî. Äîêàæåì ñíà÷àëà (∗). Ó÷èòûâàÿ, ÷òî (xi , xj ) = 0 ïðè i 6= j , íàõîäèì2|x1 + . . . + xm | =m XmXi=1 j=1(xi , xj ) =mXi=1(xi , xi ) =mX|xi |2 .i=1Äàëåå, ïóñòü x1 + . . . + xm = x01 + . . . + x0m , ãäå xi , x0i ∈ Li ∀ i. Òîãäà0 = |(x1 − x01 ) + . . . + (xm − x0m )|2 = |x1 − x01 |2 + . . . + |xm − x0m |2 ⇒ xi = x0i ∀ i.2Ñëåäñòâèå 1. Êîíå÷íàÿ ñèñòåìà íåíóëåâûõ ïîïàðíî îðòîãîíàëüíûõ âåêòîðîâ ÿâëÿåòñÿ ëèíåéíî íåçàâèñèìîé.Äîêàçàòåëüñòâî.

Ïóñòü âåêòîðû x1 , . . . , xm ïîïàðíî îðòîãîíàëüíû è îòëè÷íû îò íóëÿ.Òîãäà ñóììà ëèíåéíûõ îáîëî÷åê L(x1 ), . . . , L(xm ) ÿâëÿåòñÿ îðòîãîíàëüíîé ñóììîé, èåñëè α1 x1 + . . . + αm xm = 0, òî, ñîãëàñíî (∗),0 = |α1 x1 + . . . + αm xm |2 = |α1 |2 |x1 |2 + . . . + |αm |2 |xm |2 ⇒ α1 = . . . = αm = 0.2Å. Å. Òûðòûøíèêîâ161Ñëåäñòâèå 2. Åñëè íåíóëåâûå ïîäïðîñòðàíñòâà L1 , .

. . , Lm êîíå÷íîìåðíû è ïîïàðíîîðòîãîíàëüíû, òîdim(L1 ⊕ . . . ⊕ Lm ) = dim L1 + . . . + dim Lm .Äîñòàòî÷íî âñïîìíèòü, ÷òî äëÿ ïðÿìîé ñóììû êîíå÷íîìåðíûõ ïîäïðîñòðàíñòâ Liáàçèñ ïîëó÷àåòñÿ îáúåäèíåíèåì áàçèñîâ â ïîäïðîñòðàíñòâàõ Li (ñì. Ëåêöèþ 12).162Ëåêöèÿ 24Ëåêöèÿ 2525.1Ìàòðèöà ÃðàìàÏóñòü äàíà ñèñòåìà âåêòîðîâ v1 , . .

. , vn è ïóñòüx = α1 v1 + . . . + αn vn ,y = β1 v1 + . . . + βn vn .Òîãäà ïðÿìîå âû÷èñëåíèå äàåò(x, y) =nXβjnXj=1!(vj , vi )αj= b∗ Ga,(∗)i=1ãäåG = G(v1 , . . . , vn ) =(v1 , v1 )...(v1 , vn ).........(vn , v1 )...(vn , vn ) ,a=α1...αn, b=β1...βn.Ìàòðèöà G èç ñêàëÿðíûõ ïðîèçâåäåíèé ñèñòåìû âåêòîðîâ íàçûâàåòñÿ åå ìàòðèöåéÃðàìà. 1Òåîðåìà î ìàòðèöå Ãðàìà. Ñèñòåìà âåêòîðîâ v1 , . . . , vn ëèíåéíî çàâèñèìà òîãäà èòîëüêî òîãäà, êîãäà åå ìàòðèöà Ãðàìà âûðîæäåííàÿ.Äîêàçàòåëüñòâî. Ïóñòü x = α1 v1 + . .

. + αn vn . Èñïîëüçóÿ (∗) ïðè x = y , íàõîäèì(x, x) = a∗ Ga,a = [α1 , . . . , αn ]> .(#)Åñëè G âûðîæäåííàÿ ìàòðèöà, òî ñóùåñòâóåò ñòîëáåö a 6= 0 òàêîé, ÷òî Ga = 0 ⇒x = 0 ⇒ ñèñòåìà âåêòîðîâ v1 , . . . , vn ëèíåéíî çàâèñèìà.Îáðàòíî, åñëè ýòà ñèñòåìà ëèíåéíî çàâèñèìà, òî x = 0 ïðè íåêîòîðîì a 6= 0. Ëåãêîâèäåòü, ÷òî Ga = [(x, v1 ), . . . , (x, vn )]> = 0 åñòü ðàâíàÿ íóëþ íåòðèâèàëüíàÿ ëèíåéíàÿêîìáèíàöèÿ ñòîëáöîâ ìàòðèöû G ⇒ ñòîëáöû G ëèíåéíî çàâèñèìû ⇒ G âûðîæäåííàÿ. 2Çàäà÷à.èv1 , .

. . , vm . ïðîñòðàíñòâå ñî ñêàëÿðíûì ïðîèçâåäåíèåì äàíû äâå ñèñòåìû âåêòîðîâÏðè ýòîì⊥L ∩ M = {0},ãäåLèMu1 , . . . , u m ëèíåéíûå îáîëî÷êè âåêòîðîâ ïåðâîé è âòîðîéñèñòåìû. Äîêàæèòå, ÷òî õîòÿ áû îäíà èç ýòèõ ñèñòåì ëèíåéíî çàâèñèìà â òîì è òîëüêî òîì ñëó÷àå,êîãäàm × m-ìàòðèöà Añ ýëåìåíòàìèaij = (vj , ui )âûðîæäåííàÿ.1 Îáðàòèì âíèìàíèå íà òî, ÷òî ýëåìåíò â ïîçèöèèíàçûâàþòG>(â âåùåñòâåííîì ñëó÷àå, êîíå÷íî,i, jG> = G).163èìååò âèä(vj , vi ).×àñòî ìàòðèöåé Ãðàìà16425.2Ëåêöèÿ 25Ñêàëÿðíîå ïðîèçâåäåíèå â êîíå÷íîìåðíîì ïðîñòðàíñòâåÏóñòü v1 , . . . , vn áàçèñ â n-ìåðíîì ïðîñòðàíñòâå V . Òîãäà ñêàëÿðíîå ïðîèçâåäåíèåâåêòîðîâ x = α1 v1 + .

. . + αn vn è y = β1 v1 + . . . + βn vn èìååò âèä (∗), ãäå G ìàòðèöàÃðàìà, a = [α1 , . . . , αn ]> , b = [β1 , . . . , βn ]> .Êàêèìè ñâîéñòâàìè äîëæíà îáëàäàòü ìàòðèöà, ÷òîáû ÿâëÿòüñÿ ìàòðèöåé Ãðàìà äëÿëèíåéíî íåçàâèñèìîé ñèñòåìû?Âî-ïåðâûõ, ëþáàÿ ìàòðèöà Ãðàìà îáëàäàåò ñâîéñòâîì G∗ = G. Ìàòðèöû ñ òàêèìñâîéñòâîì íàçûâàþòñÿ ñàìîñîïðÿæåííûìè èëè ýðìèòîâûìè.

2  âåùåñòâåííîì ñëó÷àåG∗ = G> , à ìàòðèöû ñî ñâîéñòâîì G> = G íàçûâàþòñÿ ñèììåòðè÷íûìè.Âî-âòîðûõ, ñîãëàñíî (#), a∗ Ga > 0 äëÿ âñåõ a 6= 0, ïðè÷åì åñëè V âåùåñòâåííîåïðîñòðàíñòâî, òî a ∈ Rn , à åñëè êîìïëåêñíîå, òî a ∈ Cn . Ëþáàÿ ìàòðèöà ñ òàêèìñâîéñòâîì â ñëó÷àå a ∈ Cn íàçûâàåòñÿ ïîëîæèòåëüíî îïðåäåëåííîé.

Âåùåñòâåííàÿìàòðèöà ñ òåì æå ñâîéñòâîì, êîãäà a ∈ Rn , íàçûâàåòñÿ âåùåñòâåííîé ïîëîæèòåëüíîîïðåäåëåííîé.Èòàê, ëþáàÿ ìàòðèöà Ãðàìà â ñëó÷àå óíèòàðíîãî ïðîñòðàíñòâà ÿâëÿåòñÿ ýðìèòîâîéïîëîæèòåëüíî îïðåäåëåííîé. Íî âåðíî è îáðàòíîå. Ïóñòü G ïðîèçâîëüíàÿ ýðìèòîâàïîëîæèòåëüíî îïðåäåëåííàÿ ìàòðèöà. Òîãäà ëåãêî ïðîâåðÿåòñÿ, ÷òî ôóíêöèÿf (a, b) = b∗ Ga,a, b ∈ Cn ,(!)çàäàåò ñêàëÿðíîå ïðîèçâåäåíèå íà Cn è G ÿâëÿåòñÿ ìàòðèöåé Ãðàìà ñèñòåìû ñòàíäàðòíûõ áàçèñíûõ âåêòîðîâ e1 , .

. . , en (ei èìååò 1 íà i-ì ìåñòå è 0 â îñòàëüíûõ ïîçèöèÿõ).Òàêèì îáðàçîì, ôîðìóëà (!) îïðåäåëÿåò îáùèé âèä ñêàëÿðíîãî ïðîèçâåäåíèÿ â ïðîñòðàíñòâå Cn .Ñîîòâåòñòâèÿ a ↔ x, b ↔ y (çàäàþùèå èçîìîðôèçì V è Cn ) ïîçâîëÿþò ñ ïîìîùüþf (a, b) ââåñòè ñêàëÿðíîå ïðîèçâåäåíèå è íà V .Çàäà÷à.25.3Ìîæåò ëè îïðåäåëèòåëü ìàòðèöû Ãðàìà áûòü ÷èñëîì îòðèöàòåëüíûì?Ïåðïåíäèêóëÿð è ïðîåêöèÿÏóñòü V ïðîñòðàíñòâî ñî ñêàëÿðíûì ïðîèçâåäåíèåì è L åãî ïîäïðîñòðàíñòâî ðàçìåðíîñòè m. Ìû óæå çíàåì, ÷òî äëÿ ëþáîãî x ∈ V ñóùåñòâóåò ýëåìåíò íàèëó÷øåãîïðèáëèæåíèÿ z0 ∈ L òàêîé, ÷òî |x − z0 | ≤ |x − z| äëÿ âñåõ z ∈ L.

 äàííîì ñïåöèàëüíîì ñëó÷àå äëÿ íîðìû, ïîðîæäåííîé ñêàëÿðíûì ïðîèçâåäåíèåì èìååò ìåñòîåäèíñòâåííîñòü z0 è åñòü î÷åíü ïðîñòîé ñïîñîá åãî ïîëó÷åíèÿ.Èñõîäèì èç òîãî, ÷òî â L çàäàí áàçèñ z1 , . . . , zm . Òîãäàz0 = α1 z1 + . . . + αm zm .Íàéäåì êîýôôèöèåíòû α1 , . . . , αm èç óñëîâèÿx − z0 ⊥ L ⇔ (x − z0 , z1 ) = 0, . . . , (x − z0 ,α1 (z1 , z1 ) + . . .

+ αm (zm , z1 ) =α1 (z1 , z2 ) + . . . + αm (zm , z2 ) =...α1 (z1 , zm ) + . . . + αm (zm , zm ) =2  ÷åñòü ôðàíöóçñêîãî ìàòåìàòèêà Øàðëÿ Ýðìèòà (18221901).zm ) = 0 ⇔(x, z1 ),(x, z2 ),(x, zm ).Å. Å. Òûðòûøíèêîâ165Î÷åâèäíî, èìååì ñèñòåìó ëèíåéíûõ àëãåáðàè÷åñêèõ óðàâíåíèé, äëÿ êîòîðîé ìàòðèöà êîýôôèöèåíòîâ ñîâïàäàåò ñ ìàòðèöåé Ãðàìà G = G(z1 , . . .

, zm ) ñèñòåìû âåêòîðîâz1 , . . . , zm . Ïî òåîðåìå î ìàòðèöå Ãðàìà, äëÿ ëèíåéíî íåçàâèñèìîé ñèñòåìû îíà íåâûðîæäåííàÿ ⇒ ñèñòåìà îòíîñèòåëüíî α1 , . . . αm èìååò è ïðèòîì åäèíñòâåííîå ðåøåíèå⇒ âåêòîð z0 , ïîä÷èíåííûé óñëîâèþ x − z0 ⊥ L, ñóùåñòâóåò è åäèíñòâåí.Âåêòîð h ≡ x − z0 â ñëó÷àå h ⊥ L, z0 ∈ L íàçûâàåòñÿ ïåðïåíäèêóëÿðîì, îïóùåííûìèç x íà L, à z0 îðòîãîíàëüíîé ïðîåêöèåé âåêòîðà x íà L.Òåîðåìà î ïåðïåíäèêóëÿðå. Äëÿ ëþáîãî âåêòîðà x è êîíå÷íîìåðíîãî ïîäïðîñòðàíñòâà L ñóùåñòâóþò è åäèíñòâåííû ïåðïåíäèêóëÿð h ⊥ L è ïðîåêöèÿ z0 ∈ L òàêèå,÷òî x = z0 + h. Ïðè ýòîì|h| = |x − z0 | < |x − z|∀ z ∈ L, z 6= z0 .Äîêàçàòåëüñòâî. Îñòàåòñÿ äîêàçàòü ëèøü òî, ÷òî z0 îäíîçíà÷íî îïðåäåëåííûéýëåìåíò íàèëó÷øåãî ïðèáëèæåíèÿ íà L äëÿ âåêòîðà x.

Ïóñòü z ïðîèçâîëüíûé âåêòîðèç L. Òîãäà x − z = (x − z0 ) + (z0 − z), ãäå x − z0 ⊥ L è z0 − z ∈ L. Îòñþäà âûòåêàåò, ÷òîx − z0 è z0 − z ñóòü ïåðïåíäèêóëÿð è îðòîãîíàëüíàÿ ïðîåêöèÿ íà L äëÿ âåêòîðà x − z .Ïî òåîðåìå Ïèôàãîðà,|x − z|2 = |x − z0 |2 + |z0 − z|2⇒ |x − z0 | < |x − z| ∀ z 6= z0 .2Ñëåäñòâèå. Åñëè L êîíå÷íîìåðíîå ïîäïðîñòðàíñòâî, òî L = (L⊥ )⊥ .Äîêàçàòåëüñòâî. Ìû óæå çíàåì, ÷òî L ⊂ (L⊥ )⊥ . Âîçüìåì x ∈ (L⊥ )⊥ è îïóñòèì èçíåãî ïåðïåíäèêóëÿð h íà L.

Ñîãëàñíî îïðåäåëåíèþ îðòîãîíàëüíîãî äîïîëíåíèÿ, h ∈ L⊥ . òî æå âðåìÿ, h ⊥ L⊥ ⇒ (h, h) = 0 ⇒ h = 0. Çíà÷èò, x ∈ L ⇒ (L⊥ )⊥ ⊂ L. 2Çàäà÷à.ÏóñòüLèM ïîäïðîñòðàíñòâà â êîíå÷íîìåðíîì ïðîñòðàíñòâåâåäåíèåì. Ðàâíîñèëüíû ëè ðàâåíñòâàÇàäà÷à.i 6= j .Ân-ìåðíîìL ∩ M = {0}èL∩M⊥åâêëèäîâîì ïðîñòðàíñòâå âåêòîðûÄîêàæèòå, ÷òî ëþáûåÇàäà÷à.⊥nVñî ñêàëÿðíûì ïðîèç-= {0}?a1 , . . . , an+1òàêîâû, ÷òî(ai , aj ) < 0ïðèèç íèõ ëèíåéíî íåçàâèñèìû.Äîêàæèòå, ÷òî ân-ìåðíîìåâêëèäîâîì ïðîñòðàíñòâå ëþáàÿ ñèñòåìà èçn+2âåêòîðîâñîäåðæèò ïàðó âåêòîðîâ, äëÿ êîòîðûõ ñêàëÿðíîå ïðîèçâåäåíèå íåîòðèöàòåëüíî.Çàäà÷à.nÏóñòüPn ëèíåéíîå ïðîñòðàíñòâî âñåõ âåùåñòâåííûõ ìíîãî÷ëåíîâ ñòåïåíè íå âûøåR1(f, g) =f (t)g(t)dt.√−1 n2/2 .ïðåâîñõîäèòñî ñêàëÿðíûì ïðîèçâåäåíèåìïîäïðîñòðàíñòâà25.4Pn−1íåÄîêàæèòå, ÷òî ðàññòîÿíèå îò ìíîãî÷ëåíàxnäîÎðòîãîíàëüíûå ñèñòåìûÑèñòåìà íåíóëåâûõ âåêòîðîâ x1 , . .

Характеристики

Тип файла
PDF-файл
Размер
1,77 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6417
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее