Главная » Просмотр файлов » Е.Е. Тыртышников - Матричный анализ и линейная алгебра

Е.Е. Тыртышников - Матричный анализ и линейная алгебра (1112313), страница 30

Файл №1112313 Е.Е. Тыртышников - Матричный анализ и линейная алгебра (Е.Е. Тыртышников - Матричный анализ и линейная алгебра) 30 страницаЕ.Е. Тыртышников - Матричный анализ и линейная алгебра (1112313) страница 302019-04-25СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 30)

Ïðîäîëæàÿ äåéñòâîâàòü òàêèì æå îáðàçîì(k)è äàëåå, ïîñòðîèì ïîñëåäîâàòåëüíîñòü ìàòðèö Ak = [aij ], k = 0, 1, . . . .Ïóñòü hk îáîçíà÷àåò ñóììó êâàäðàòîâ âíåäèàãîíàëüíûõ ýëåìåíòîâ ìàòðèöû Ak . Òîãäà k2hk ≤h0 → 0 ïðè k → ∞.3Ñëåäîâàòåëüíî, ïðè ëþáûõ ôèêñèðîâàííûõ i 6= j ïîñëåäîâàòåëüíîñòü âíåäèàãîíàëüíûõ(k)ýëåìåíòîâ aij ñõîäèòñÿ ê íóëþ ïðè k → ∞.20.4Âëîæåííûå ïîäïîñëåäîâàòåëüíîñòèËåììà îá îãðàíè÷åííûõ ïîñëåäîâàòåëüíîñòÿõ. Ïóñòü èìååòñÿ êîíå÷íîå ÷èñëî(k)(k)îãðàíè÷åííûõ ïîñëåäîâàòåëüíîñòåé {s1 }, .

. . , {sm }, k = 1, 2, . . . . Òîãäà ìîæíîâûáðàòü ïîñëåäîâàòåëüíîñòü íîìåðîâ k1 < k2 < . . . òàêèì îáðàçîì, ÷òî êàæäàÿ(k )(k )èç ïîäïîñëåäîâàòåëüíîñòåé {s1 l }, . . . , {sml }, l = 1, 2, . . . , áóäåò ñõîäÿùåéñÿ.Äîêàçàòåëüñòâî. Èç îãðàíè÷åííîé ïîñëåäîâàòåëüíîñòè {sk } âûáèðàåì ñõîäÿùóþñÿïîäïîñëåäîâàòåëüíîñòü skl è âìåñòî èñõîäíûõ ïîñëåäîâàòåëüíîñòåé ðàññìàòðèâàåì ïîä(k )(k )ïîñëåäîâàòåëüíîñòè {s1 l }, . . . , {sml }, l = 1, 2, . . . . Îíè îñòàþòñÿ, êîíå÷íî, îãðàíè÷åííûìè è ïðè ýòîì ïåðâàÿ èç íèõ áóäåò ñõîäÿùåéñÿ. Òåïåðü óæå èç îãðàíè÷åííîéïîñëåäîâàòåëüíîñòè {sk2l } âûáåðåì ñõîäÿùóþñÿ ïîäïîñëåäîâàòåëüíîñòü (ïîäïîñëåäîâàòåëüíîñòü ïîäïîñëåäîâàòåëüíîñòè ïî îòíîøåíèþ ê èñõîäíîé ïîñëåäîâàòåëüíîñòè) è(kl )(kl )ïåðåõîäèì ê ïîäïîñëåäîâàòåëüíîñòÿì {s1 i }, .

. . , {sm i }, i = 1, 2, . . . . Ïîëó÷åííûåâëîæåííûå ïîäïîñëåäîâàòåëüíîñòè áóäóò, ïî-ïðåæíåìó, îãðàíè÷åííûìè, íî ñõîäÿùèìèñÿ ÿâëÿþòñÿ óæå ïåðâûå äâå. È òàê äàëåå. 213420.5Ëåêöèÿ 20Äèàãîíàëèçàöèÿ â ïðåäåëåÂåðíåìñÿ ê ìåòîäó âðàùåíèé. Áóäóò ëè ñõîäèòüñÿ ê êîíå÷íûì ïðåäåëàì ïîñëåäîâà(k)òåëüíîñòè äèàãîíàëüíûõ ýëåìåíòîâ aii äëÿ íàøåé áëèæàéøåé öåëè íå î÷åíü âàæíî.Êàæäàÿ èç íèõ ÿâëÿåòñÿ îãðàíè÷åííîé è ïîýòîìó îáëàäàåò ñõîäÿùåéñÿ ïîäïîñëåäîâàòåëüíîñòüþ.

Áîëåå òîãî, ïî ëåììå îá îãðàíè÷åííûõ ïîñëåäîâàòåëüíîñòÿõ, èìååòñÿïîäïîñëåäîâàòåëüíîñòü ìàòðèö Ak , â êîòîðîé êàæäàÿ èç ïîñëåäîâàòåëüíîñòåé äèàãîíàëüíûõ ýëåìåíòîâ ñõîäèòñÿ ê êàêîìó-òî ïðåäåëó.×òîáû íå çàãðîìîæäàòü îáîçíà÷åíèÿ, áóäåì ñ÷èòàòü, ÷òî Ak è åñòü òà ñàìàÿ ïîäïîñ(k)ëåäîâàòåëüíîñòü, äëÿ êîòîðîé âñå ïîñëåäîâàòåëüíîñòè aij ÿâëÿþòñÿ ñõîäÿùèìèñÿ (êàêìû çíàåì, ïðè i 6= j ê íóëþ). Ïóñòü(k)lim aii= λi ,i = 1, 2, 3.Ak = Pk> A0 Pk ,k = 1, 2, . . . ,k→∞Ïîíÿòíî, ÷òî(#)(k)ãäå ìàòðèöû Pk = [pij ] ÿâëÿþòñÿ ïðîèçâåäåíèÿìè èñïîëüçîâàííûõ ìàòðèö âðàùåíèÿ(èç ñîîòíîøåíèé (1), (2) èëè (3)). Ïîýòîìó ïðè ëþáîì k ìàòðèöà Pk ÿâëÿåòñÿ îðòîãîíàëüíîé (êàê ïðîèçâåäåíèå îðòîãîíàëüíûõ ìàòðèö).

Ñëåäîâàòåëüíî, ñóììà êâàäðàòîââñåõ ýëåìåíòîâ ìàòðèöû Pk ïðè ëþáîì k îäèíàêîâà (è ðàâíà 3). Çíà÷èò, êàæäàÿ ïîñëå(k)äîâàòåëüíîñòü pij ÿâëÿåòñÿ îãðàíè÷åííîé ïðè k → ∞ è ïîýòîìó îáëàäàåò ñõîäÿùåéñÿïîäïîñëåäîâàòåëüíîñòüþ.Ïî ëåììå îá îãðàíè÷åííûõ ïîñëåäîâàòåëüíîñòÿõ, ñóùåñòâóåò ïîäïîñëåäîâàòåëüíîñòü(k)ìàòðèö Pk , â êîòîðîé êàæäàÿ ïîñëåäîâàòåëüíîñòü pij áóäåò ñõîäÿùåéñÿ.

Äëÿ óïðîùåíèÿîáîçíà÷åíèé áóäåì ñ÷èòàòü, ÷òî Pk è åñòü èìåííî òàêàÿ ïîäïîñëåäîâàòåëüíîñòü. Ïóñòü(k)lim pijk→∞= pij ,i, j = 1, 2, 3.Ïðè êàæäîì k âûïîëíÿåòñÿ ðàâåíñòâî (#). Ïåðåõîäÿ ê ïðåäåëó â ñîîòâåòñòâóþùèõïîýëåìåíòíûõ ðàâåíñòâàõ, ïîëó÷àåìλ1 0 0Λ ≡  0 λ2 0  = P > A0 P.0 0 λ3Êðîìå òîãî, äëÿ êàæäîãî k èìååì Pk> Pk = I ⇒ P > P = I .  èòîãå äîêàçàíà ñëåäóþùàÿâàæíàÿÒåîðåìà. Äëÿ ëþáîé âåùåñòâåííîé ñèììåòðè÷íîé ìàòðèöû A ïîðÿäêà 3 ñóùåñòâóþò îðòîãîíàëüíàÿ ìàòðèöà P è äèàãîíàëüíàÿ ìàòðèöà Λ òàêèå, ÷òîΛ = P > AP.Ñëåäñòâèå.

Ñóùåñòâóåò äåêàðòîâà ñèñòåìà êîîðäèíàò, â êîòîðîé óðàâíåíèå ïîâåðõíîñòè âòîðîãî ïîðÿäêà èìååò âèäf (ex, ye, ze) = λ1 xe2 + λ2 ye2 + λ3 ze2 + 2b1 xe + 2b2 ye + 2b3 ze + a = 0.Çàìå÷àíèå.  ñèëó îðòîãîíàëüíîñòè ìàòðèöû P , ðàâåíñòâî Λ = P > AP âûïîëíÿåòñÿâ òîì è òîëüêî òîì ñëó÷àå, êîãäà AP = P Λ. Ïîñëåäíåå îçíà÷àåò, ÷òî j -é ñòîëáåö pjÅ. Å.

Òûðòûøíèêîâ135ìàòðèöû P óäîâëåòâîðÿåò óðàâíåíèþ Apj = λj pj ⇔ (A − λj I)pj = 0. Ó÷èòûâàÿ,÷òî pj 6= 0, íàõîäèì det(A − λj I) = 0. Òàêèì îáðàçîì, ÷èñëà λ1 , λ2 , λ3 ýòî êîðíèêóáè÷åñêîãî ìíîãî÷ëåíà f (λ) = det(A − λI). Åñëè îíè óæå íàéäåíû, òî ñòîëáåö pjìîæíî ïîëó÷èòü êàê ðåøåíèå îäíîðîäíîé ñèñòåìû ëèíåéíûõ àëãåáðàè÷åñêèõ óðàâíåíèé(A − λj I)pj = 0.20.6Äèàãîíàëèçàöèÿ âåùåñòâåííûõ ñèììåòðè÷íûõ ìàòðèö äåéñòâèòåëüíîñòè òîò æå ìåòîä âðàùåíèé ïîçâîëÿåò ïîëó÷èòü áîëåå îáùóþ òåîðåìó.Òåîðåìà î äèàãîíàëèçàöèè âåùåñòâåííûõ ñèììåòðè÷íûõ ìàòðèö. Âåùåñòâåí-íàÿ ñèììåòðè÷íàÿ ìàòðèöà A ïðîèçâîëüíîãî ïîðÿäêà n ïðèâîäèòñÿ ê äèàãîíàëüíîéìàòðèöå Λ ñ ïîìîùüþ íåêîòîðîé îðòîãîíàëüíîé ìàòðèöû P :Λ = P > AP.Äîêàçàòåëüñòâî.

Íà÷èíàÿ ñ A0 = A, ïîñòðîèì ïîñëåäîâàòåëüíîñòü ìàòðèö Ak = [a(k)ij ],k = 0, 1, . . . , â êîòîðîé Ak ïîëó÷àåòñÿ èç Ak−1 ïóòåì óìíîæåíèÿ ñëåâà è ñïðàâà íàìàòðèöû âðàùåíèÿ:Ak = Rk> Ak−1 Rk ,(∗)ãäå Rk îòëè÷àåòñÿ îò åäèíè÷íîé ìàòðèöû I ëèøü ÷åòûðüìÿ ýëåìåíòàìè 2 × 2ïîäìàòðèöû, ðàïîëîæåííîé íà ïåðåñå÷åíèè ñòðîê è ñòîëáöîâ ñ íîìåðàìè i < j èðàâíîécos φ − sin φ.sin φcos φÌàòðèöà Rk îñóùåñòâëÿåò ïîâîðîò íà óãîë φ â êîîðäèíàòíîé ïëîñêîñòè, îïðåäåëÿåìîéíîìåðàìè i 6= j . Ëþáàÿ ìàòðèöà âðàùåíèÿ òàêîãî âèäà ÿâëÿåòñÿ, î÷åâèäíî, îðòîãîíàëüíîé.ßñíî, ÷òî ñèììåòðè÷íîñòü ìàòðèöû A0 = A íàñëåäóåòñÿ âñåìè ìàòðèöàìè Ak . Èçïðåäûäóùèõ èññëåäîâàíèé ìû óæå çíàåì, ÷òî φ ìîæíî âûáðàòü òàêèì îáðàçîì, ÷òî(k)(k)aij = aji = 0.

Îáîçíà÷èì ÷åðåç dk è hk ñóììû êâàäðàòîâ äèàãîíàëüíûõ è âíåäèàãîíàëüíûõ ýëåìåíòîâ ìàòðèöû Ak . Òîãäà2 222 2 2 (k)(k)(k−1)(k−1)(k−1)(k−1)aii+ ajj= aii+ ajj+ 2 aij⇒ dk − dk−1 = 2 aij.Äëÿ êàæäîãî k áóäåì âûáèðàòü ïëîñêîñòü âðàùåíèÿ (íîìåðà i < j ) òàêìè îáðàçîì,(k−1)÷òîáû èñêëþ÷àåìûé ýëåìåíò aijáûë ìàêñèìàëüíûì ïî ìîäóëþ ñðåäè âñåõ âíåäèàãîíàëüíûõ ýëåìåíòîâ ìàòðèöû Ak−1 . Îáùåå ÷èñëî âíåäèàãîíàëüíûõ ýëåìåíòîâ ðàâíîn2 − n. Ïîýòîìó2hk−1(k−1).aij≥ 2n −nÎòñþäà, ó÷èòûâàÿ ðàâåíñòâî dk + hk = dk−1 + hk−1 , ïîëó÷àåìk22hk ≤ hk−1 − 2hk−1 ≤ 1 − 2h0 → 0 ïðè k → ∞.n −nn −nÈç ñîîòíîøåíèé (∗) âûòåêàåò, ÷òîAk = Pk> APk ,k = 1, 2, .

. . ,136Ëåêöèÿ 20(k)ãäå äëÿ âñåõ k ìàòðèöû Pk = [pij ] ÿâëÿþòñÿ îðòîãîíàëüíûìè (êàê ïðîèçâåäåíèÿ îðòîãîíàëüíûõ ìàòðèö).(k)(k)Äëÿ ëþáûõ ôèêñèðîâàííûõ i, j ïîñëåäîâàòåëüíîñòè aij , pij ÿâëÿþòñÿ îãðàíè÷åííûìè. Ïî ëåììå îá îãðàíè÷åííûõ ïîñëåäîâàòåëüíîñòÿõ, ñóùåñòâóåò ïîñëåäîâàòåëüíîñòü(k )(k )íîìåðîâ k1 < k2 < . . .

òàêàÿ, ÷òî êàæäàÿ èç ïîäïîñëåäîâàòåëüíîñòåé aij l , pij l áóäåò(k )ñõîäÿùåéñÿ. Çàìåòèì, ÷òî aij l → 0 ïðè i 6= j . Ïóñòü(k )lim aii l = λi ,l→∞Ââåäåì ìàòðèöû(k )lim pij l = pij ,i = 1, . . . , n,λ1Λ=l→∞i, j = 1, . . . , n....,P = [pij ].λnÄëÿ âñåõ l = 1, 2, . . . èìååì Akl = Pk>l APkl . Ïåðåõîäÿ ê ïðåäåëó â ïîýëåìåíòíûõðàâåíñòâàõ, ïîëó÷àåìΛ = P > AP.Èç óñëîâèé îðòîãîíàëüíîñòè Pk>l Pkl = I âûòåêàåò, ÷òî â ïðåäåëå P > P = I . Çíà÷èò,ìàòðèöà P ÿâëÿåòñÿ îðòîãîíàëüíîé. 2Ìû òîëüêî ÷òî ïîëó÷èëè îäèí èç âàæíåéøèõ ðåçóëüòàòîâ êàê äëÿ ñàìîé òåîðèèìàòðèö, òàê è äëÿ åå ìíîãî÷èñëåííûõ ïðèëîæåíèé.  íàøåì êóðñå ìû åùå âåðíåìñÿ êåãî îáñóæäåíèþ â ñâÿçè ñ ðÿäîì ôóíäàìåíòàëüíûõ ïîíÿòèé ëèíåéíîé àëãåáðû.

Íàøåäîêàçàòåëüñòâî çàìå÷àòåëüíî ñâîåé êîíñòðóêòèâíîñòüþ: îíî äàåò îäíîâðåìåííî è ìåòîäïðèáëèæåííîãî âû÷èñëåíèÿ ìàòðèö Λ è P . Ýòî îäèí èç ðàííèõ ïðàêòè÷åñêèõ ìåòîäîââû÷èñëèòåëüíîé àëãåáðû, ïðåäëîæåííûé Ê. ßêîáè â 1846 ãîäó. 1Çàäà÷à.A ∈ Rn×n ñ íåíóëåâîé ñóììîé ýëåìåíòîâ ãëàâíîé äèàãîíàëè.n×n>ìàòðèöû Q ∈ Ròàêîé, ÷òî â ìàòðèöå Q AQ âñå ýëåìåíòûÄàíà ñèììåòðè÷íàÿ ìàòðèöàÄîêàçàòü ñóùåñòâîâàíèå îðòîãîíàëüíîéãëàâíîé äèàãîíàëè îäèíàêîâû.1 Ïîñëåäíèå ðåçóëüòàòû ïî èçó÷åíèþ ìåòîäà âðàùåíèé ïðèíàäëåæàò ñîâñåì íåäàâíåìó ïðîøëîìó:â 1990-õ ãîäàõ áûëè îáíàðóæåíû åãî îñîáûå âîçìîæíîñòè, ñâÿçàííûå ñ âûñîêîòî÷íûì âû÷èñëåíèåììàëûõ ïî ìîäóëþ ýëåìåíòîâ ìàòðèöûΛ.Ëåêöèÿ 2121.1Ïðèâåäåííûå óðàâíåíèÿ ïîâåðõíîñòè âòîðîãî ïîðÿäêàÏðè èçó÷åíèè ëèíèé âòîðîãî ïîðÿäêà ìû óñòàíîâèëè, ÷òî ëþáàÿ èç íèõ â êàêîé-ëèáîäåêàðòîâîé ñèñòåìå êîîðäèíàò îïèñûâàåòñÿ îäíèì èç îñíîâíûõ (êàê èíîãäà ãîâîðÿò,ïðèâåäåííûõ) óðàâíåíèé(1) λ1 x2 + λ2 y 2 + c = 0,(2) λ2 y 2 + 2bx = 0,(3) λ2 y 2 + c = 0,â êîòîðûõ âñå êîýôôèöèåíòû íåíóëåâûå, çà èñêëþ÷åíèåì, áûòü ìîæåò, c.

 ñëó÷àåïîâåðõíîñòè âòîðîãî ïîðÿäêà èñõîäíîé òî÷êîé äëÿ âûâîäà ïðèâåäåííûõ óðàâíåíèé ÿâëÿåòñÿ âîçíèêàþùåå â íåêîòîðîé äåêàðòîâîé ñèñòåìå óðàâíåíèå âèäàλ1 x2 + λ2 y 2 + λ3 z 2 + 2b1 x + 2b2 y + 2b3 z + a = 0.Åñëè λ1 , λ2 , λ3 6= 0, òî ñ ïîìîùüþ ïåðåíîñà íà÷àëà êîîðäèíàò (ñäâèãà) ìîæíî ïîëó÷èòü óðàâíåíèå âèäàλ1 x2 + λ2 y 2 + λ3 z 2 + c = 0.Ïóñòü λ3 6= 0.

Òîãäà â ëèíåéíîé ÷àñòè ñ ïîìîùüþ ñäâèãà ìîæíî óáðàòü ÷ëåíû,ñîäåðæàùèå x è y .  ðåçóëüòàòå ïîÿâèòñÿ óðàâíåíèå âèäà λ1 x2 + λ2 y 2 + 2bz + c = 0. Åñëèb 6= 0, òî ñäâèã ïîçâîëÿåò ïåðåéòè áîëåå ïðîñòîìó óðàâíåíèþ λ1 x2 + λ2 y 2 + 2bz = 0. Åñëèæå b = 0, òî ïîëó÷àåòñÿ óðàâíåíèå âèäà λ1 x2 + λ2 y 2 + c = 0.Òåïåðü ïðåäïîëîæèì, ÷òî λ2 = λ3 = 0. Ïîñëå èñêëþ÷åíèÿ ÷ëåíà ñ x â ëèíåéíîé÷àñòè (ïóòåì ñäâèãà) ïîëó÷èì óðàâíåíèå λ1 x2 + 2b2 y + 2b3 z + c = 0. Äàëåå, ñ ïîìîùüþïîâîðîòà â ïëîñêîñòè êîîðäèíàò y è z â ëèíåéíîé ÷àñòè ìîæíî èçáàâèòüñÿ îò ÷ëåíà,ñîäåðæàùåãî z : cos φ − sin φb2 b3= b 0 .sin φ cos φ ñàìîì äåëå, âûáåðåì φ òàê, ÷òîáû −b2 sin φ + b3 cos φ = 0. Òàêèì îáðàçîì,èìååòñÿ äåêàðòîâà ñèñòåìà êîîðäèíàò, â êîòîðîé çàäàííàÿ ïîâåðõíîñòü îïèñûâàåòñÿóðàâíåíèåì λ1 x2 + 2by + c = 0.

Характеристики

Тип файла
PDF-файл
Размер
1,77 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6384
Авторов
на СтудИзбе
308
Средний доход
с одного платного файла
Обучение Подробнее