Е.Е. Тыртышников - Матричный анализ и линейная алгебра (1112313), страница 25
Текст из файла (страница 25)
Äëÿ âçàèìíî ïðîñòûõ ìíîãî÷ëåíîâ f (x), g(x) ∈ P [x] ñóùåñòâóþò ìíîãî÷ëåíû φ(x), ψ(x) ∈ P [x] òàêèå, ÷òî f (x) φ(x) + g(x) ψ(x) = 1.Çàìå÷àíèå. Ëþáîé ìíîãî÷ëåí âèäà f (x)φ(x) + g(x)ψ(x) äåëèòñÿ íà d(x) = (f (x), g(x))(ïîýòîìó, â ÷àñòíîñòè, åãî ñòåïåíü íå ìåíüøå ñòåïåíè d(x)).16.6Çíà÷åíèÿ ìíîãî÷ëåíà è êîðíèÏóñòü f (x) = a0 +a1 x+.
. .+an xn ∈ P [x] è θ ∈ P . Îïðåäåëèì f (θ) åñòåñòâåííûì îáðàçîì:f (θ) = a0 +a1 θ +. . .+an θn . ßñíî, ÷òî f (θ) ∈ P . Îíî è íàçûâàåòñÿ çíà÷åíèåì ìíîãî÷ëåíàf (x) ïðè x = θ. Ýëåìåíò θ íàçûâàåòñÿ êîðíåì ìíîãî÷ëåíà f (x), åñëè f (θ) = 0.Òåîðåìà Áåçó. Åñëè f (x) ∈ P [x] è f (θ) = 0 äëÿ íåêîòîðîãî θ ∈ P , òî f (x) äåëèòñÿíà x − θ. 1Äîêàçàòåëüñòâî. Âûïîëíèâ äåëåíèå ñ îñòàòêîì, íàõîäèì f (x) = (x − θ)q(x) + r(x),ãäå r(x) = 0 ëèáî deg r(x) = 0. Åñëè r(x) = 0, òî âñå äîêàçàíî.
Ñëó÷àé deg r(x) = 01 Äàííîå ïðåäëîæåíèå îáû÷íî ïðèâîäèòñÿ â êà÷åñòâå ãëàâíîãî ñëåäñòâèÿ èç òåîðåìû Áåçó óòâåðæäåíèÿ î òîì, ÷òîr(θ) = f (θ)äëÿ îñòàòêàr(x)îò äåëåíèÿf (x)íàx − θ.110Ëåêöèÿ 16âåäåò ê ïðîòèâîðå÷èþ: 0 = f (θ) = (θ − θ) q(θ) + r(θ) = r(θ) ⇒ r(x) = 0.  òî æåâðåìÿ, ñîãëàñíî íàøèì îïðåäåëåíèÿì, ìíîãî÷ëåí íóëåâîé ñòåïåíè íå ìîæåò áûòü ðàâåííóëåâîìó ìíîãî÷ëåíó. 2Íåíóëåâîé ìíîãî÷ëåí f (x) ∈ P [x] íàçûâàåòñÿ ðàçëîæèìûì íàä P , åñëè ñóùåñòâóþòìíîãî÷ëåíû íåíóëåâîé ñòåïåíè p(x), q(x) ∈ P [x] òàêèå, ÷òî f (x) = p(x)q(x).
 ïðîòèâíîìñëó÷àå ìíîãî÷ëåí f (x) íàçûâàåòñÿ íåðàçëîæèìûì, èëè íåïðèâîäèìûì íàä P .Èç òåîðåìû Áåçó âûòåêàåò, ÷òî íåðàçëîæèìûé íàä P ìíîãî÷ëåí íå ìîæåò èìåòüêîðíåé èç P , à ïðîèçâîëüíûé ìíîãî÷ëåí ñòåïåíè n íàä P íå ìîæåò èìåòü áîëåå nêîðíåé.Çàäà÷à.Äîêàæèòå, ÷òî íàä ëþáûì êîíå÷íûì ïîëåì ñóùåñòâóåò áåñêîíå÷íî ìíîãî íåðàçëîæèìûõìíîãî÷ëåíîâ.Çàäà÷à.Äîêàæèòå, ÷òî äëÿ ìíîãî÷ëåíîâ íàä ïîëåì âû÷åòîâìåñòî ðàâåíñòâî16.7pZpïî ïðîñòîìó ìîäóëþpèìååòp(z − 1) = z − 1.Ïðèñîåäèíåíèå êîðíÿÍåðåäêî ïðèõîäèòñÿ ðàññìàòðèâàòü ìíîãî÷ëåíû íàä ïîëåì P , íå èìåþùèå êîðíåé èçP .
Òàêèå ìíîãî÷ëåíû ìîãóò, òåì íå ìåíåå, èìåòü êîðåíü â êàêîì-ëèáî ðàñøèðåíèè Fïîëÿ P . Ýëåìåíò θ ∈ F íàçûâàåòñÿ àëãåáðàè÷åñêèì íàä ïîëåì P , åñëè îí ÿâëÿåòñÿ êîðíåì ìíîãî÷ëåíà íàä P . Ìíîãî÷ëåí íàä P ìèíèìàëüíîé ñòåïåíè ñ êîðíåì θ íàçûâàåòñÿìèíèìàëüíûì ìíîãî÷ëåíîì äëÿ θ íàä ïîëåì P .Áóäåì ðàññìàòðèâàòü òîëüêî òàêèå ðàñøèðåíèÿ ïîëÿ P , êîòîðûå âëîæåíû â F . Ïóñòüθ ∈ F .
Ïîëå íàçûâàåòñÿ ìèíèìàëüíûì θ-ðàñøèðåíèåì ïîëÿ P , åñëè îíî ñîäåðæèò θ èâëîæåíî â ëþáîå ïîëå, ñîäåðæàùåå P è θ. Îáîçíà÷åíèå: P (θ). áîëåå îáùåì ñëó÷àå, åñëè θ1 , . . . , θk ∈ F , òî ÷åðåç P (θ1 , . . . , θk ) îáîçíà÷àåòñÿ ìèíèìàëüíîå ïîëå, ñîäåðæàùåå P è ýëåìåíòû θ1 , . . . , θk . Ìèíèìàëüíîñòü îçíà÷àåò, ÷òî äàííîåïîëå âëîæåíî â ëþáîå ïîëå, ñîäåðæàùåå P è θ1 , .
. . , θk .Åñëè θ ∈/ P , òî ãîâîðÿò, ÷òî ïîëå P (θ) ïîëó÷åíî èç P ïðèñîåäèíåíèåì ýëåìåíòà θ.Ðàñøèðåíèå òàêîãî òèïà íàçûâàåòñÿ ïðîñòûì àëãåáðàè÷åñêèì, åñëè θ ÿâëÿåòñÿ êîðíåìíåêîòîðîãî ìíîãî÷ëåíà èç P [x].Òåîðåìà î ïðèñîåäèíåíèè êîðíÿ. Ìèíèìàëüíûé ìíîãî÷ëåí äëÿ θ îïðåäåëÿåòñÿîäíîçíà÷íî ñ òî÷íîñòüþ äî íåíóëåâîãî ìíîæèòåëÿ. Åñëè n åãî ñòåïåíü, òî ìèíèìàëüíîå θ-ðàñøèðåíèå ïîëÿ P èìååò âèäP (θ) = {s ∈ F : s = a0 + a1 θ + .
. . + an−1 θn−1 ,a0 , a1 , . . . , an−1 ∈ P }.(∗)Äîêàçàòåëüñòâî. Ïðåäïîëîæèì, ÷òî f (x) è g(x) äâà ìèíèìàëüíûõ ìíîãî÷ëåíà äëÿθ (îáà ñòåïåíè n). Òîãäà èõ íàèáîëüøèé îáùèé äåëèòåëü d(x) ∈ P [x] èìååò âèäd(x) = f (x)φ(x) + g(x)ψ(x),ãäå φ(x), ψ(x) ∈ P [x].Îòñþäà d(θ) = 0. Ïîýòîìó deg d(x) = n ⇒ êàæäûé èç ìíîãî÷ëåíîâ f (x) è g(x)îòëè÷àåòñÿ îò d(x) ëèøü íåíóëåâûì ìíîæèòåëåì.Îáîçíà÷èì ÷åðåç M ìíîæåñòâî, îïðåäåëåííîå ïðàâîé ÷àñòüþ (∗).
Î÷åâèäíî, ÷òîM ⊂ P (θ). Ïîýòîìó îñòàåòñÿ òîëüêî äîêàçàòü, ÷òî M ïîäïîëå.Âîçüìåì ïðîèçâîëüíûé ìíîãî÷ëåí p(x) íàä ïîëåì P è çàìåòèì, ÷òî p(θ) ∈ M . ÄëÿÅ. Å. Òûðòûøíèêîâ111äîêàçàòåëüñòâà ðàçäåëèì p(x) ñ îñòàòêîì íà ìèíèìàëüíûé ìíîãî÷ëåí f (x):⇒p(x) = f (x)q(x) + r(x)p(θ) = r(θ).ßñíî, ÷òî r(θ) åñòü ñóììà ýëåìåíòîâ 1, θ, . . . , θn−1 ñ êîýôôèöèåíòàìè èç ïîëÿ P .Ïîýòîìó r(θ) ∈ M .Ïðîèçâåäåíèå äâóõ ýëåìåíòîâ èç M ÿâëÿåòñÿ, î÷åâèäíî, çíà÷åíèåì íåêîòîðîãî ìíîãî÷ëåíà p(x) ∈ P [x] ïðè x = θ. Ïîýòîìó îíî ïðèíàäëåæèò M . Äàëåå, ëþáîé ýëåìåíòèç M èìååò âèä p(θ), ãäå ìíîãî÷ëåí p(x) ∈ P [x] èìååò ñòåïåíü íå âûøå n − 1.
Ìíîãî÷ëåí f (x), î÷åâèäíî, íåðàçëîæèì, ïîýòîìó ìíîãî÷ëåíû p(x) è f (x) âçàèìíî ïðîñòû. Ïî ñëåäñòâèþ èç òåîðåìû î íàèáîëüøåì îáùåì äåëèòåëå, ñóùåñòâóþò ìíîãî÷ëåíûφ(x), ψ(x) ∈ P [x] òàêèå, ÷òîf (x)φ(x) + p(x)ψ(x) = 1⇒p(θ)ψ(θ) = 1.2√P ìèíèìàëüíîå ÷èñëîâîå ïîëå, ñîäåðæàùåå ïîëå ðàöèîíàëüíûõ ÷èñåë Q è 5 2.Äîêàæèòå, ÷òî ïîëå P åñòü ëèíåéíîå ïðîñòðàíñòâî íàä ïîëåì Q è íàéäèòå åãî ðàçìåðíîñòü.√√Çàäà÷à. Äîêàæèòå, ÷òî êâàäðàòíûå êîðíè p1 , . . . , pn èç ïðîñòûõ ÷èñåë p1 < . . .
< pn ëèíåé-Çàäà÷à.Ïîëåíî íåçàâèñèìû êàê ýëåìåíòû ëèíåéíîãî ïðîñòðàíñòâà âåùåñòâåííûõ ÷èñåë íàä ïîëåì ðàöèîíàëüíûõ÷èñåë.112Ëåêöèÿ 16Ëåêöèÿ 1717.1Êîìïëåêñíûå ìíîãî÷ëåíûÇàìå÷àòåëüíî, ÷òî â íàèáîëåå èíòåðåñíûõ ñëó÷àÿõ à èìåííî, äëÿ êîìïëåêñíûõ ìíîãî÷ëåíîâ (ìíîãî÷ëåíîâ ñ êîìïëåêñíûìè êîýôôèöèåíòàìè) ìîæíî ïîëó÷èòü òî÷íîåóòâåðæäåíèå î ñóùåñòâîâàíèè êîðíåé: ëþáîé ìíîãî÷ëåí ñòåïåíè n > 1 èìååò êîðåíü,ÿâëÿþùèéñÿ êîìïëåêñíûì ÷èñëîì.
Äàííîå óòâåðæäåíèå òðàäèöèîííî íàçûâàåòñÿ îñíîâíîé òåîðåìîé àëãåáðû.Îíî çàíèìàåò äåéñòâèòåëüíî îñîáîå ìåñòî â ðÿäå ðàçäåëîâ ìàòåìàòèêè ìíîãèå èçíèõ èìåþò äëÿ íåå ñâîè ñîáñòâåííûå äîêàçàòåëüñòâà. Âñå èçâåñòíûå äîêàçàòåëüñòâà âòîé èëè èíîé ìåðå èñïîëüçóþò ïîíÿòèå íåïðåðûâíîñòè. Ìû èçëîæèì äîêàçàòåëüñòâî,îñíîâàííîå íà ìåòîäå Äàëàìáåðà 1 è òðåáóþùåå îò íàñ íàèìåíüøåé ïîäãîòîâèòåëüíîéðàáîòû.Ìû áóäåì ðàññìàòðèâàòü ìíîãî÷ëåí f (z) ∈ C[z] êàê ôóíêöèþ îò z ∈ C. Ïðè ýòîì ðàâåíñòâî ìíîãî÷ëåíîâ êàê ôóíêöèé âëå÷åò çà ñîáîé òàêæå èõ ðàâåíñòâî êàê ôîðìàëüíûõâûðàæåíèé îò ñòåïåíåé áóêâû z .
Äëÿ äîêàçàòåëüñòâà ìîæíî ïðàêòè÷åñêè ïîâòîðèòüðàññóæäåíèå, ïðîâåäåííîå â ñëó÷àå âåùåñòâåííûõ ìíîãî÷ëåíîâ. À ìîæíî ýòî ñäåëàòüè òàê: èç òåîðåìû Áåçó ÿñíî, ÷òî ìíîãî÷ëåí ñòåïåíè n íå ìîæåò èìåòü áîëåå, ÷åì nêîðíåé; åñëè f (z) = g(z) äëÿ âñåõ z , òî ìíîãî÷ëåí f (z) − g(z) èìååò áåñêîíå÷íî ìíîãîêîðíåé, ïîýòîìó îí îáÿçàí áûòü íóëåâûì ìíîãî÷ëåíîì.17.2Ïîñëåäîâàòåëüíîñòè êîìïëåêñíûõ ÷èñåëÏóñòü çàäàíà ïîñëåäîâàòåëüíîñòü êîìïëåêñíûõ ÷èñåë zk , k = 1, 2, .
. . . Îíà íàçûâàåòñÿ ñõîäÿùåéñÿ ê òî÷êå z0 , åñëè äëÿ ëþáîãî ε > 0 ñóùåñòâóåò íîìåð N = N (ε) òàêîé,÷òî äëÿ âñåõ k ≥ N âûïîëíÿåòñÿ íåðàâåíñòâî |zk − z0 | ≤ ε. (Ñîãëàñíî îïðåäåëåíèþ, ïîíÿòèå ñõîäèìîñòè äëÿ êîìïëåêíûõ ïîñëåäîâàòåëüíîñòåé ñâîäèòñÿ ê ñõîäèìîñòè ê íóëþâåùåñòâåííîé ïîñëåäîâàòåëüíîñòè |zk − z|.) Îáîçíà÷åíèå: lim zk = z0 èëè zk → z0 .k→∞Òåîðåìà Áîëüöàíî-Âåéåðøòðàññà. Äëÿ ïðîèçâîëüíîé ïîñëåäîâàòåëüíîñòè zk òî-÷åê ïðÿìîóãîëüíèêà Π = [A, B] × [C, D] ñóùåñòâóåò ïîäïîñëåäîâàòåëüíîñòü zki , ñõîäÿùàÿñÿ ê íåêîòîðîé òî÷êå z0 ∈ Π.Äîêàçàòåëüñòâî.
Çàïèøåì zk = xk + i yk , xk , yk ∈ R. Î÷åâèäíî, xk ∈ [A, B] èyk ∈ [C, D].  ñèëó òåîðåìû Áîëüöàíî-Âåéåðøòðàññà äëÿ âåùåñòâåííûõ ïîñëåäîâàòåëüíîñòåé íà îòðåçêå, ñóùåñòâóåò ïîäïîñëåäîâàòåëüíîñòü xki , ñõîäÿùàÿñÿ ê âåùåñòâåííîìó ÷èñëó x0 ∈ [A, B]. Ðàññìîòðèì ñîîòâåòñòâóþùóþ ïîäïîñëåäîâàòåëüíîñòü òî÷åê1 Çàìåòèì, ÷òî Äàëàìáåð íå ìîã äàòü ïîëíîãî äîêàçàòåëüñòâà, òàê êàê â åãî âðåìÿ íå áûëî ñòðîãîãîïîíÿòèÿ íåïðåðûâíîé ôóíêöèè.113114Ëåêöèÿ 17zki = xki + i yki .
Ïîñêîëüêó yki ∈ [C, D], ïî òîé æå ïðè÷èíå íàéäåòñÿ ïîäïîñëåäîâàòåëüíîñòü ykij , ñõîäÿùàÿñÿ ê âåùåñòâåííîìó ÷èñëó y0 ∈ [C, D]. Ïðè ýòîì xkij → x0 (êàêïîäïîñëåäîâàòåëüíîñòü ñõîäÿùåéñÿ ïîñëåäîâàòåëüíîñòè). Ïóñòü z0 = x0 + i y0 . Òîãäà|zkij − z0 | ≤ |xkij − x0 | + |ykij − y0 | → 0.17.32Íåïðåðûâíûå ôóíêöèè íà êîìïëåêñíîé ïëîñêîñòèÐàññìîòðèì ôóíêöèþ Φ(z), îïðåäåëåííóþ ïðè âñåõ z ∈ C è ïðèíèìàþùóþ âåùåñòâåííûå çíà÷åíèÿ. Ôóíêöèÿ Φ(z) íàçûâàåòñÿ íåïðåðûâíîé â òî÷êå z0 , åñëè äëÿ äëÿ ëþáîéïîñëåäîâàòåëüíîñòè zk , ñõîäÿùåéñÿ ê z0 , ïîñëåäîâàòåëüíîñòü çíà÷åíèé Φ(zk ) ñõîäèòñÿ êΦ(z0 ).Òåîðåìà Âåéåðøòðàññà.
Ïóñòü ôóíêöèÿ Φ(z) íåïðåðûâíà âî âñåõ òî÷êàõ ïðÿìîóãîëüíèêà Π = [A, B] × [C, D]. Òîãäà ñóùåñòâóþò òî÷êè z∗ , z ∗ ∈ Π òàêèå, ÷òîΦ(z∗ ) ≤ Φ(z) ≤ Φ(z ∗ )∀z ∈ Π.Äîêàçàòåëüñòâî. Äîêàæåì ñóùåñòâîâàíèå òî÷êè z ∗ . Ïðåæäå âñåãî, óáåäèìñÿ â òîì,÷òî ôóíêöèÿ Φ(z) îãðàíè÷åíà ñâåðõó. Åñëè ýòî íå òàê, òî ñóùåñòâóåò ïîñëåäîâàòåëüíîñòü zk ñî ñâîéñòâîì Φ(zk ) > k . Ïî òåîðåìå Áîëüöàíî-Âåéåðøòðàññà, îíà îáëàäàåò ñõîäÿùåéñÿ ïîäïîñëåäîâàòåëüíîñòüþ zki → z0 ∈ Π.  ñèëó íåïðåðûâíîñòè, Φ(zki ) → Φ(z0 ),à ýòî ïðîòèâîðå÷èò íåðàâåíñòâàì Φ(zki ) > ki , âûïîëíÿþùèìñÿ ïðè âñåõ ki .