Главная » Просмотр файлов » Е.Е. Тыртышников - Матричный анализ и линейная алгебра

Е.Е. Тыртышников - Матричный анализ и линейная алгебра (1112313), страница 26

Файл №1112313 Е.Е. Тыртышников - Матричный анализ и линейная алгебра (Е.Е. Тыртышников - Матричный анализ и линейная алгебра) 26 страницаЕ.Е. Тыртышников - Матричный анализ и линейная алгебра (1112313) страница 262019-04-25СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 26)

Ïîýòîìóñóùåñòâóåò âåùåñòâåííîå ÷èñëî M òàêîå, ÷òî Φ(z) ≤ M äëÿ âñåõ z ∈ Π. ×èñëî Míàçûâàåòñÿ âåðõíåé ãðàíüþ äëÿ Φ(z).Ðàññìîòðèì ìíîæåñòâî âåùåñòâåííûõ ÷èñåë Φ(Π) = {x : x = Φ(z), z ∈ Π}. Ïîñêîëüêó îíî îãðàíè÷åíî ñâåðõó, òî äëÿ íåãî ñóùåñòâóåò òî÷íàÿ âåðõíÿÿ ãðàíü M ∗ òàêàÿâåðõíÿÿ ãðàíü, êîòîðàÿ ëèáî ïðèíàäëåæèò ìíîæåñòâó, ëèáî ê íåé ñõîäèòñÿ íåêîòîðàÿïîñëåäîâàòåëüíîñòü îòëè÷íûõ îò íåå ÷èñåë èç äàííîãî ìíîæåñòâà. 2 Èòàê, ïóñòü zk ∈ Πè Φ(zk ) → M ∗ . Ïî òåîðåìå Áîëüöàíî-Âåéåðøòðàññà, èìååòñÿ ïîäïîñëåäîâàòåëüíîñòü zki ,ñõîäÿùàÿñÿ ê íåêîòîðîé òî÷êå z ∗ ∈ Π.

 ñèëó íåïðåðûâíîñòè,M ∗ = lim Φ(zki ) = Φ(z ∗ ).k→∞Î÷åâèäíî, ÷òî ôóíêöèÿ Ψ(z) = −Φ(z) îãðàíè÷åíà ñâåðõó òîãäà è òîëüêî òîãäà, êîãäàΦ(z) îãðàíè÷åíà ñíèçó. Çíà÷èò, íàìè äîêàçàíî òàêæå ñóùåñòâîâàíèå íèæíåé ãðàíè äëÿΦ(z). Îïèðàñü íà óæå äîêàçàííîå óòâåðæäåíèå, çàêëþ÷àåì, ÷òî äëÿ Ψ(z) ñóùåñòâóåòòî÷êà z∗ ∈ Π òàêàÿ, ÷òî Ψ(z) ≤ Ψ(z∗ ) äëÿ âñåõ z ∈ Π. Îòñþäà Φ(z∗ ) ≤ Φ(z) äëÿ âñåõz ∈ Π.

217.4Ñâîéñòâà ìîäóëÿ ìíîãî÷ëåíàÐàññìîòðèì ïðîèçâîëüíûé ìíîãî÷ëåíf (z) = a0 + a1 z + . . . + an−1 z n−1 + z n2 Äàííûé ôàêò äîêàçûâàåòñÿ â êóðñå ìàòåìàòè÷åñêîãî àíàëèçà.(#)Å. Å. Òûðòûøíèêîâ115ñ êîìïëåêíûìè êîýôôèöèåíòàìè è ñòàðøèì êîýôôèöèåíòîì an = 1, n ≥ 1.Ëåììà î íåïðåðûâíîñòè ìîäóëÿ ìíîãî÷ëåíà. Ôóíêöèÿ Φ(z) = |f (z)| íåïðåðûâíàïðè âñåõ z ∈ C.Äîêàçàòåëüñòâî.

Äëÿ äîêàçàòåëüñòâà íåïðåðûâíîñòè Φ(z) â òî÷êå z = z0 äîñòàòî÷íîóñòàíîâèòü íåïðåðûâíîñòü ôóíêöèè Φ(z0 +h) îò h ∈ C â òî÷êå h = 0. ßñíî, ÷òî f (z0 +h)åñòü ìíîãî÷ëåí îò h:f (z0 + h) = b0 + b1 h + . . . + bn−1 hn−1 + hn ,ãäå b0 = f (z0 ).Îòñþäà íàõîäèì|Φ(z0 + h) − Φ(z0 )|=≤≤||f (z0 + h)| − |f (z0 )|| ≤ |f (z0 + h) − f (z0 )||b1 h + . . . + bn−1 hn−1 + hn ||b1 ||h| + . . . + |bn−1 ||h|n−1 + |h|n .2Ëåììà î ðîñòå ìîäóëÿ ìíîãî÷ëåíà. Äëÿ ëþáîãî ÷èñëà M > 0 ñóùåñòâóåò R > 0òàêîå, ÷òî èç íåðàâåíñòâà |z| ≥ R âûòåêàåò, ÷òî |f (z)| ≥ M .Äîêàçàòåëüñòâî. Ó÷èòûâàÿ, ÷òî |z i | = |z|i , ïîëó÷àåì|f (z)| ≥ |z n | − |a0 + a1 z + .

. . + an−1 z n−1 | ≥ |z|n − |a0 | − |a1 ||z| − . . . − |an−1 ||z|n−1 .Îáîçíà÷èì ÷åðåç A ìàêñèìàëüíîå èç ÷èñåë |a0 |, . . . , |an−1 |. Òîãäà ïðè |z| ≥ 1 íàõîäèìnAn.|f (z)| ≥ |z| 1 −|z|Äëÿ ëþáîãî çàäàííîãî M > 0 ïîëîæèìR = max{1, 2nA,√n2M }.Ëåãêî âèäåòü, ÷òî åñëè |z| ≥ R, òînA2Mn|f (z)| ≥ R 1 −= Rn /2 ≥= M.2nA217.52Îñíîâíàÿ òåîðåìà àëãåáðûÏóñòü f (z) ïðîèçâîëüíûé ìíîãî÷ëåí âèäà (#).Ëåììà Äàëàìáåðà. Åñëè â íåêîòîðîé òî÷êå z ∈ C âûïîëíÿåòñÿ íåðàâåíñòâî |f (z)| >0, òî íàéäåòñÿ h ∈ C òàêîå, ÷òî |f (z + h)| < |f (z)|.Äîêàçàòåëüñòâî. Óòâåðæäåíèå î÷åâèäíî â ñëó÷àå n = 1.

Ïîýòîìó ïðåäïîëîæèì, ÷òîn ≥ 2. Ôèêñèðóåì z ∈ C è ðàññìîòðèì f (z + h) êàê ìíîãî÷ëåí îò h:f (z + h) = f (z) + b1 h + . . . + bn−1 hn−1 + hn .Ïóñòü bm ïåðâûé íåíóëåâîé êîýôôèöèåíò ( ⇒ b1 = . . . = bm−1 = 0). Òîãäàf (z + h) = f (z) + bm hm + g(h)hm+1 ,g(h) = bm+1 + . . . + bn−1 hn−m−2 + hn−m−1 .116Ëåêöèÿ 17Îïðåäåëèì êîìïëåêñíîå ÷èñëî ζ ðàâåíñòâîì ζ m = −f (z)/bm è áóäåì èñêàòü h â âèäåh = ζt,t > 0.ßñíî, ÷òî|f (z) + bm hm | = |f (z)(1 − tm )| = |f (z)|(1 − tm ) < |f (z)| ïðè t > 0.Ïðè ýòîì íà îòðåçêå 0 ≤ t ≤ 1 äëÿ íåêîòîðîãî B > 0 èìååì|g(ζt) (ζt)m+1 | ≤ Btm+1 .Ñëåäîâàòåëüíî, åñëè 0 < t ≤ 1, òî|f (z + ζt)| < |f (z)|(1 − tm ) + Btm+1 = |f (z)| + (Bt − |f (z)|) tm .Ïðè 0 < t ≤ min(1, |f (z)|/B) ïîëó÷àåì |f (z + ζt)| < |f (z)|.2Îñíîâíàÿ òåîðåìà àëãåáðû.

Ëþáîé ìíîãî÷ëåí ñ êîìïëåêñíûìè êîýôôèöèåíòàìèñòåïåíè âûøå íóëåâîé èìååò õîòÿ áû îäèí êîìïëåêñíûé êîðåíü.Äîêàçàòåëüñòâî. Ïóñòü M = |f (0)|. Åñëè M = 0, òî âñå äîêàçàíî. Ïðåäïîëîæèì, ÷òîM > 0. Cîãëàñíî ëåììå î ðîñòå ìîäóëÿ ìíîãî÷ëåíà, ïðè âñåõ |z| ≥ R èìååì |f (z)| ≥ M .Ðàññìîòðèì êâàäðàò Π = [−R, R] × [−R, R]. Ôóíêöèÿ |f (z)| íåïðåðûâíà ïðè âñåõ z ∈ Cè, â ÷àñòíîñòè, ïðè âñåõ z ∈ Π. Ïî òåîðåìå Âåéåðøòðàññà, ñóùåñòâóåò z∗ ∈ Π òàêîå, ÷òî|f (z∗ )| ≤ |f (z)| ïðè âñåõ z ∈ Π. Î÷åâèäíî, ÷òî |f (z∗ )| ≤ M è, êðîìå òîãî, M ≤ |f (z)|äëÿ ëþáûõ òî÷åê z ∈/Π ⇒|f (z∗ )| ≤ |f (z)|∀ z ∈ C.(∗)Åñëè |f (z∗ )| > 0, òî, ïî ëåììå Äàëàìáåðà, ïðè íåêîòîðîì h ∈ C ïîëó÷àåì |f (z∗ + h)| <|f (z)|, ÷òî ïðîòèâîðå÷èò íåðàâåíñòâàì (∗). Òàêèì îáðàçîì, |f (z∗ )| = 0 ⇒ z∗ ÿâëÿåòñÿèñêîìûì êîðíåì: f (z∗ ) = 0. 217.6Ðàçëîæåíèå êîìïëåêñíûõ ìíîãî÷ëåíîâÌíîãî÷ëåíû ïåðâîé ñòåïåíè íàçûâàþò òàêæå ëèíåéíûìè ìíîãî÷ëåíàìè.Òåîðåìà.

Ëþáîé êîìïëåêñíûé ìíîãî÷ëåí f (z) ñòåïåíè n > 0 ðàçëàãàåòñÿ â C[z] íà nëèíåéíûõ ìíîæèòåëåé:f (z) = a (z − z1 ) . . . (z − zn ),a, z1 , . . . , zn ∈ C.(∗)Äàííîå ðàçëîæåíèå åäèíñòâåííî ñ òî÷íîñòüþ äî ïîðÿäêà ñîìíîæèòåëåé.Äîêàçàòåëüñòâî. Ïî îñíîâíîé òåîðåìå àëãåáðû, f (z) èìååò õîòÿ áû îäèí êîìïëåêñ-íûé êîðåíü ïóñòü ýòî áóäåò z1 . Ñîãëàñíî òåîðåìå Áåçó, ìíîãî÷ëåí f (z) äåëèòñÿ íàëèíåéíûé ìíîãî÷ëåí z − z1 : f (z) = (z − z1 )f1 (z).

Åñëè deg f1 (z) = 0, òî èñêîìîå ðàçëîæåíèå óæå ïîëó÷åíî. Åñëè deg f1 (z) > 0, òî è ýòîò ìíîãî÷ëåí èìååò õîòÿ áû îäèí êîðåíü ïóñòü ýòî áóäåò z2 . Òàêèì îáðàçîì, f (z) = (z − z1 )(z − z2 )f2 (z). Åñëè deg f2 (z) = 0, òîðàçëîæåíèå ïîëó÷åíî. Åñëè íåò, òî f2 (z) òàêæå èìååò êîìïëåêñíûé êîðåíü, è òàê äàëåå.ßñíî, ÷òî ÷èñëî a ðàâíî ñòàðøåìó êîýôôèöèåíòó ìíîãî÷ëåíà f (z).Òåïåðü ïðåäïîëîæèì, ÷òî èìåþòñÿ äâà ðàçëîæåíèÿ:f (z) = a (z − z1 ) . . . (z − zn ) = ea (z − ze1 ) . . . (z − zem ).Å. Å. Òûðòûøíèêîâ117Ñòåïåíü ìíîãî÷ëåíà â ïðàâîé ÷àñòè, î÷åâèäíî, ðàâíà m ⇒ m = n. Êðîìå òîãî, a = ea(ýòî ñòàðøèé êîýôôèöèåíò ìíîãî÷ëåíà f (z)).

Äàëåå, (z1 − ze1 ) . . . (z1 − zen ) = 0 ⇒õîòÿ áû îäíà èç ñêîáîê ðàâíà íóëþ ⇒ z1 ñîâïàäàåò ñ êàêèì-òî èç ÷èñåë zei . Ïîñëåïåðåíóìåðàöèè âñåãäà ìîæíî ñ÷èòàòü, ÷òî z1 = ze1 . Èòàê,(z − z1 ) ( (z − z2 ) . . . (z − zn ) − (z − ze2 ) . . . (z − zen )) = 0.Îòñóòñòâèå â C[z] äåëèòåëåé íóëÿ îçíà÷àåò, ÷òî(z − z2 ) . . . (z − zn ) = (z − ze2 ) . . . (z − zen ).Ðàññóæäàÿ àíàëîãè÷íûì îáðàçîì, ïðèõîäèì (ïîñëå ïåðåíóìåðàöèè êîðíåé) ê ðàâåíñòâóz2 = ze2 , è òàê äàëåå.

2Ñëåäñòâèå. Ëþáîé êîìïëåêñíûé ìíîãî÷ëåí f (x) ñòåïåíè n > 0 èìååò åäèíñòâåííîåðàçëîæåíèå âèäàf (z) = a (z − ζ1 )k1 . . . , (z − ζm )km ,ζi 6= ζjïðè i 6= j,k1 , . . . , km > 0,k1 + . . . + km = n,(∗∗)a, ζ1 , . . . , ζm ∈ C.Ðàçëîæåíèå âèäà (∗∗) èíîãäà íàçûâàåòñÿ êîìïëåêñíûì êàíîíè÷åñêèì ðàçëîæåíèåì ìíîãî÷ëåíà f (z). ×èñëî ki íàçûâàåòñÿ êðàòíîñòüþ êîðíÿ ζi . Êîðåíü ζi íàçûâàåòñÿêðàòíûì, åñëè ki > 1, è ïðîñòûì, åñëè ki = 1.Ñîãëàñíî (∗∗), ìíîãî÷ëåí f (z) èìååò m ïîïàðíî ðàçëè÷íûõ êîðíåé.  ðàçëîæåíèè(∗) íåêîòîðûå èç ÷èñåë z1 , .

. . , zm ìîãóò ñîâïàäàòü: åñëè zi = ζj , òî èìååòñÿ ðîâíî kj÷èñåë, ðàâíûõ ζj . Íåðåäêî ïîëó÷åííóþ âûøå òåîðåìó ôîðìóëèðóþò òàêèì îáðàçîì:ëþáîé êîìïëåêñíûé ìíîãî÷ëåí ñòåïåíè n > 0 èìååò ðîâíî n êîìïëåêñíûõ êîðíåé ñó÷åòîì êðàòíîñòåé.17.7Ðàçëîæåíèå âåùåñòâåííûõ ìíîãî÷ëåíîâÐàññìîòðèì âåùåñòâåííûé ìíîãî÷ëåí (ìíîãî÷ëåí ñ âåùåñòâåííûìè êîýôôèöèåíòàìè)f (x) = a0 + a1 x + . . . + an xn è ïðåäïîëîæèì, ÷òî ÷èñëî z ∈ C ÿâëÿåòñÿ åãî êîðíåì.Òîãäà êîìïëåêñíî ñîïðÿæåííîå ÷èñëî z òàêæå ÿâëÿåòñÿ êîðíåì (â ñèëó âåùåñòâåííîñòèêîýôôèöèåíòîâ ai = ai äëÿ âñåõ i):f (z) = a0 + a1 z + .

. . + an z n = a0 + a1 z + . . . + an z n = f (z) = 0.Åñëè z 6= z , òî êâàäðàòè÷íûé ìíîãî÷ëåí (ìíîãî÷ëåí ñòåïåíè 2)φ(x) = (x − z)(x − z) = x2 − (z + z) x + |z|2èìååò, î÷åâèäíî, âåùåñòâåííûå êîýôôèöèåíòû è ÿâëÿåòñÿ íåðàçëîæèìûì â R[x].Òåîðåìà. Ëþáîé âåùåñòâåííûé ìíîãî÷ëåí f (x) ñòåïåíè n > 0 ðàçëàãàåòñÿ â R[x] íàëèíåéíûå è íåðàçëîæèìûå êâàäðàòè÷íûå ìíîæèòåëè:f (x) = a(x − x1 ) . . . (x − xM ) φ1 (x) . . . φN (x),a, x1 , .

. . , xM ∈ R,M + 2N = n,118Ëåêöèÿ 17φi (x) = x2 + si x + ti , si , ti ∈ R,i = 1, . . . , N.Äàííîå ðàçëîæåíèå åäèíñòâåííî ñ òî÷íîñòüþ äî ïîðÿäêà ñîìíîæèòåëåé.Äîêàçàòåëüñòâî. Ìíîãî÷ëåí f (x) èìååò n êîìïëåêñíûõ êîðíåé z1 , . . . , zn ñ ó÷åòîìêðàòíîñòåé. Ïóñòü ðîâíî M èç íèõ ÿâëÿþòñÿ âåùåñòâåííûìè. Òîãäà îñòàëüíûå n − Mêîðíåé ðàçáèâàþòñÿ íà ïàðû êîìïëåêñíî ñîïðÿæåííûõ ÷èñåë ( ⇒ ÷èñëî n − M äîëæíîáûòü ÷åòíûì: n−M = 2N ).

Âåùåñòâåííûå êîðíè äàþò M ëèíåéíûõ ìíîæèòåëåé, à ïàðûêîìïëåêñíî ñîïðÿæåííûõ ÷èñåë äàþò N íåðàçëîæèìûõ êâàäðàòè÷íûõ ìíîæèòåëåé.Òåì ñàìûì ñóùåñòâîâàíèå èñêîìîãî ðàçëîæåíèÿ äîêàçàíî. Äîïóñòèì, ÷òî èìåþòñÿ äâàðàçëîæåíèÿ òàêîãî âèäà:f (x) = a(x − x1 ) . . . (x − xM ) φ1 (x) . . . φN (x) = ea(x − xe1 ) .

. . (x − xeM 0 ) φe1 (x) . . . φeN 0 (x).ßñíî, ÷òî a = ea (ýòî ñòàðøèé êîýôôèöèåíò f (x)). Äàëåå, ïîëíûé íàáîð êîìïëåêñíûõêîðíåé ñ ó÷åòîì êðàòíîñòåé îïðåäåëåí îäíîçíà÷íî ⇒ âåùåñòâåííûå êîðíè ñ ó÷åòîìêðàòíîñòåé îïðåäåëåíû îäíîçíà÷íî ⇒a(x − x1 ) . . . (x − xM ) = ea(x − xe1 ) .

. . (x − xeM 0 ),M = M0⇒N = N 0.Ïîñêîëüêó â R[x] äåëèòåëåé íóëÿ íåò, ïîëó÷àåìφ1 (x) . . . φN (x) = φe1 (x) . . . φeN (x).Ïóñòü φ1 (z) = 0 ⇒ φ1 (x) = (x − z)(x − z). Äàëåå, φe1 (z) . . . φeN (z) = 0 ⇒ õîòÿ áûîäèí èç ìíîæèòåëåé ðàâåí íóëþ. Ïóñòü, íàïðèìåð, φe1 (z) = 0 ⇒ φe1 (x) = (x − z)(x − z).Òàêèì îáðàçîì,φ1 (x) = φe1 (x)Äàëåå ïî èíäóêöèè.⇒φ2 (x) . . . φN (x) = φe2 (x) . . . φeN (x).2Ñëåäñòâèå. Ëþáîé âåùåñòâåííûé ìíîãî÷ëåí íå÷åòíîé ñòåïåíè èìååò õîòÿ áû îäèíâåùåñòâåííûé êîðåíü.Çàìå÷àíèå.

Ïîñëåäíåå óòâåðæäåíèå ìîæíî áûëî áû äîêàçàòü è íåïîñðåäñòâåííî áåçèñïîëüçîâàíèÿ îñíîâíîé òåîðåìû àëãåáðû. Äîñòàòî÷íî äîêàçàòü, ÷òî f (x) (êàê ôóíêöèÿîò x ∈ R) èìååò ïîëîæèòåëüíûé çíàê ïðè äîñòàòî÷íî áîëüøèõ ïîëîæèòåëüíûõ x è îòðèöàòåëüíûé çíàê ïðè äîñòàòî÷íî áîëüùèõ îòðèöàòåëüíûõ x. Ïîñëå ýòîãî èñïîëüçîâàòüíåïðåðûâíîñòü f (x) è òåîðåìó Ðîëëÿ.Ëåêöèÿ 1818.1Ôîðìóëû ÂèåòàÐàññìîòðèì êîìïëåêñíûé ìíîãî÷ëåí f (x) ñòåïåíè n ñî ñòàðøèì êîýôôèöèåíòîì 1 èåãî ðàçëîæåíèå íà ëèíåéíûå ìíîæèòåëè:f (x) = a0 + a1 x + .

Характеристики

Тип файла
PDF-файл
Размер
1,77 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6361
Авторов
на СтудИзбе
310
Средний доход
с одного платного файла
Обучение Подробнее