Главная » Просмотр файлов » Е.Е. Тыртышников - Матричный анализ и линейная алгебра

Е.Е. Тыртышников - Матричный анализ и линейная алгебра (1112313), страница 39

Файл №1112313 Е.Е. Тыртышников - Матричный анализ и линейная алгебра (Е.Е. Тыртышников - Матричный анализ и линейная алгебра) 39 страницаЕ.Е. Тыртышников - Матричный анализ и линейная алгебра (1112313) страница 392019-04-25СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 39)

Ïóñòü>a1 , . . . , an ñòîëáöû ìàòðèöû A, à b>1 , . . . , bn ñòðîêè ìàòðèöû B . Òîãäà>AB = a1 b>1 + . . . + an b n .Èñïîëüçóÿ íåðàâåíñòâî òðåóãîëüíèêà, ëåãêî ïðîâåðÿåìûå ðàâåíñòâà ||ai b>i ||F||ai ||F ||bi ||F è íåðàâåíñòâî ÊîøèÁóíÿêîâñêîãîØâàðöà, íàõîäèì||AB||F ≤nX||ai b>i ||F=i=1nX≤!1/2||ai ||2Fi=1nXnX=||ai ||F ||bi ||Fi=1!1/2||bi ||2F= ||A||F ||B||F .2i=1Çàìå÷àíèå. Íîðìà Ôðîáåíèóñà íå ìîæåò áûòü îïåðàòîðíîé íîðìîé íà Cm×n íè ïðèêàêîì âûáîðå âåêòîðíûõ íîðì â ïðîñòðàíñòâàõ Cn è Cm äåëî â òîì, ÷òî îïåðàòîðíàÿíîðìà åäèíè÷íîé ìàòðèöû äîëæíà áûòü ðàâíà 1.Çàäà÷à.Äîêàçàòü, ÷òî ïðè ëþáîì ôèêñèðîâàííîìc>1âåëè÷èíà||A|| = max{|a11 | + c|a12 |, |a22 | + c|a21 |},îïðåäåëÿåò â ïðîñòðàíñòâåëþáûõ27.62 × 2-ìàòðèö AèB.2 × 2-ìàòðèöíîðìó ñ íåðàâåíñòâîìaA = 11a21a12,a22||AB|| ≤ ||A||||B||,ñïðàâåäëèâûì äëÿßâëÿåòñÿ ëè îíà îïåðàòîðíîé íîðìîé?Ñîõðàíåíèå íîðìËèíåéíûé îãðàíè÷åííûé îïåðàòîð A : V → V ñî ñâîéñòâîì||Ax|| = ||x|| ∀ x ∈ Víàçûâàåòñÿ èçîìåòðè÷åñêèì èëè ñîõðàíÿþùèì íîðìó.

Ñðàçó æå çàìåòèì, ÷òî ñîõðàíåíèå êàêîé-òî îäíîé íîðìû íå îçíà÷àåò ñîõðàíåíèå äðóãîé íîðìû.Ïóñòü â Cn çàäàíà êàêàÿ-òî íîðìà, à ìàòðèöà A ∈ Cn×n (êàê ëèíåéíûé îïåðàòîð èçnC â Cn ) åå ñîõðàíÿåò. Òàêóþ ìàòðèöó áóäåì íàçûâàòü èçîìåòðè÷åñêîé îòíîñèòåëüíîäàííîé íîðìû.Óòâåðæäåíèå. Ìíîæåñòâî âñåõ êîìïëåêñíûõ n × n-ìàòðèö, èçîìåòðè÷åñêèõ îòíî-ñèòåëüíî ãåëüäåðîâñêîé 2-íîðìû, ñîâïàäàåò ñ ìíîæåñòâîì óíèòàðíûõ ìàòðèö ïîðÿäêà n.Äîêàçàòåëüñòâî.

Î÷åâèäíî, 2-íîðìà ïîðîæäàåòñÿ åñòåñòâåííûì ñêàëÿðíûì ïðîèçâåäåíèåì â Cn . Èç íàøèõ èññëåäîâàíèé, ñâÿçàííûõ ñ òîæäåñòâîì ïàðàëëåëîãðàììà,Å. Å. Òûðòûøíèêîâ181âûòåêàåò, ÷òî ñîõðàíåíèå äëèí âëå÷åò çà ñîáîé ñîõðàíåíèå ñêàëÿðíûõ ïðîèçâåäåíèé:y ∗ (A∗ A)x = y ∗ x ∀ x, y ∈ Cn .⇔(Ax, Ay) = (x, y)Îòñþäà y ∗ (A∗ A − I)x = 0 äëÿ âñå x, y ∈ Cn . Âûáèðàÿ â êà÷åñòâå x è y âåêòîðû ñòàíäàðòíîãî áàçèñà, ïðèõîäèì ê âûâîäó î òîì, ÷òî âñå ýëåìåíòû ìàòðèöû A∗ A − I ðàâíû íóëþ.Òàêèì îáðàçîì, ñîõðàíåíèå 2-íîðìû ðàâíîñèëüíî óñëîâèþ A∗ A = I , îïðåäåëÿþùåìóíèòàðíóþ ìàòðèöó. 2Çàìå÷àíèå.

Ìíîæåñòâî ìàòðèö, ñîõðàíÿþùèõ p-íîðìó â ñëó÷àå p 6= 2, çíà÷èòåëüíîáåäíåå. Ïîïðîáóéòå äîêàçàòü, ÷òî äëÿ âñåõ p 6= 2 îíî îäíî è òî æå è ñîâïàäàåò ñ ìíîæåñòâîì ìàòðèö âèäà DP , ãäå D äèàãîíàëüíàÿ óíèòàðíàÿ ìàòðèöà, à P ìàòðèöàïåðåñòàíîâêè.27.7Óíèòàðíî èíâàðèàíòíûå íîðìûÌàòðè÷íàÿ íîðìà || · || íàçûâàåòñÿ óíèòàðíî èíâàðèàíòíîé, åñëè ||P AQ|| = ||A|| äëÿëþáîé ìàòðèöû A è ëþáûõ óíèòàðíûõ ìàòðèö P è Q, äîïóñêàþùèõ óìíîæåíèå.Óòâåðæäåíèå 1. Íîðìà Ôðîáåíèóñà ÿâëÿåòñÿ óíèòàðíî èíâàðèàíòíîé.Äîêàçàòåëüñòâî.

Ïóñòü Q óíèòàðíàÿ ìàòðèö è A = [a1 , . . . , an ]. Òîãäà||Qaj ||2 = ||aj ||2 ,Îòñþäà||QA||2F=nX||Qaj ||22j=1=j = 1, . . . , n.nX||aj ||22 = ||A||2F .2j=1Çàìåòèì, ÷òî ïðè èçó÷åíèè ìåòîäà âðàùåíèé (â ñâÿçè ñ óïðîùåíèåì âèäà óðàâíåíèé äëÿ ïîâåðõíîñòåé 2-ãî ïîðÿäêà) ìû óæå èñïîëüçîâàëè ôàêò ñîõðàíåíèÿ ñóììûêâàäðàòîâ ýëåìåíòîâ âåùåñòâåííîé ìàòðèöû ïðè óìíîæåíèè åå ñëåâà è ñïðàâà íà îðòîãîíàëüíûå ìàòðèöû.Ðàññìîòðèì åùå ìàòðè÷íóþ íîðìó, ïîä÷èíåííóþ ãåëüäåðîâñêîé 2-íîðìå:||A|| = sup ||Ax||2 .||x||2 =1Äàííàÿ íîðìà íàçûâàåòñÿ ñïåêòðàëüíîé íîðìîé ìàòðèöû (ñìûñë íàçâàíèÿ ÷åðåç íåêîòîðîå âðåìÿ ïðîÿñíèòñÿ). Îáîçíà÷åíèå: ||A||2 .Óòâåðæäåíèå 2. Ñïåêòðàëüíàÿ íîðìà ìàòðèöû ÿâëÿåòñÿ óíèòàðíî èíâàðèàíòíîé.Äîêàçàòåëüñòâî. Ïóñòü Q óíèòàðíàÿ ìàòðèö è A = [a1 , . .

. , an ]. Ïî îïðåäåëåíèþ,||A||2 = sup ||Ax||2 = sup ||(QA)x||2 = ||QA||2 .||x||2 =1||x||2 =1Êðîìå òîãî,||AQ||2 = sup ||(AQ)x||2 =||x||2 =1sup||Q∗ x||2 =1||(AQ)(Q∗ x)||2 = sup ||(Ax)||2 = ||A||2 .||x||2 =1218227.8Ëåêöèÿ 27Ñèíãóëÿðíîå ðàçëîæåíèå ìàòðèöû 70-õ ãîäàõ 19-ãî âåêà íåçàâèñèìî è ïî÷òè îäíîâðåìåííî Áåëüòðàìè (1873) è Æîðäàí(1874) îòêðûëè, ÷òî ëþáóþ êâàäðàòíóþ ìàòðèöó ìîæíî ïðèâåñòè ê äèàãîíàëüíîìóâèäó ñ ïîìîùüþ óìíîæåíèÿ ñëåâà è ñïðàâà íà óíèòàðíûå ìàòðèöû. Ðàçëè÷íûå âîïðîñû,ñâÿçàííûå ñ äàííûì îòêðûòèåì, â òîì ÷èñëå åãî îáîáùåíèÿ, ñòàëè çàòåì ïðåäìåòîìöåëîãî ðÿäà èññëåäîâàíèé. Íå áóäåò ñèëüíûì ïðåóâåëè÷åíèåì ñêàçàòü, ÷òî äàííûé ôàêòîêàçàëñÿ ïîòðÿñàþùå ïîëåçíûì è îäíèì èç íàèáîëåå âîñòðåáîâàííûõ â òåîðèè ìàòðèöè ïðèëîæåíèÿõ ëèíåéíîé àëãåáðû. äåéñòâèòåëüíîñòè òî æå âåðíî è äëÿ ïðÿìîóãîëüíîé ìàòðèöû. Ñ ïîìîùüþ óìíîæåíèÿ íà óíèòàðíûå ìàòðèöû îíà ïðèâîäèòñÿ ê ïðÿìîóãîëüíîé ìàòðèöå òåõ æå ðàçìåðîâ, èìåþùåé âñþäó íóëè, êðîìå ýëåìåíòîâ ñ èíäåêñàìè i = j .

Òàêèå ìàòðèöû áóäåìíàçûâàòü äèàãîíàëüíûìè ïðÿìîóãîëüíûìè ìàòðèöàìè. Èòàê, ðå÷ü èäåò î ðàçëîæåíèèâèäàA = V ΣU ∗ ,(∗)ãäå A çàäàííàÿ m × n-ìàòðèöà, U è V óíèòàðíûå ìàòðèöû ñîîòâåòñòâåííî ïîðÿäêà m è n, à Σ äèàãîíàëüíàÿ ïðÿìîóãîëüíàÿ m × n-ìàòðèöà, èìåþùàÿ ïðè i = jíåîòðèöàòåëüíûå ÷èñëàσ1 ≥ σ2 ≥ . . .

≥ σmin(m,n) .Ðàçëîæåíèå (∗) íàçûâàåòñÿ ñèíãóëÿðíûì ðàçëîæåíèåì ìàòðèöû A. ×èñëà σi íàçûâàþòñÿ ñèíãóëÿðíûìè ÷èñëàìè ìàòðèöû A.Òåîðåìà. Ñèíãóëÿðíîå ðàçëîæåíèå A = V ΣU ∗ ñóùåñòâóåò äëÿ ëþáîé êîìïëåêñíîéïðÿìîóãîëüíîé ìàòðèöû A. Åñëè A âåùåñòâåííàÿ, òî ìàòðèöû U è V ìîæíî âûáðàòü âåùåñòâåííûìè.Äîêàçàòåëüñòâî. Ïîëîæèì σ1 = ||A||2 = sup ||Ax||2 /||x||2 .  ñèëó êîìïàêòíîñòè åäèx6=0íè÷íîé ñôåðû â Cn , íåïðåðûâíîñòè íîðìû è òåîðåìû Âåéåðøðàññà, íàéäåòñÿ âåêòîð x1òàêîé, ÷òî ||Ax1 ||2 = ||A||2 è ||x1 ||2 = 1. Ïóñòü y1 = Ax1 /||Ax1 ||2 . Òàêèì îáðàçîì,Ax1 = σ1 y1 ,||x1 ||2 = ||y1 ||2 .(#)Äîïîëíèì x1 è y1 äî îðòîíîðìèðîâàííûõ áàçèñîâ è îáðàçóåì óíèòàðíûå ìàòðèöûU1 = [x1 , x2 , .

. . , xn ],V1 = [y1 , y2 , . . . , ym ].Ñîãëàñíî (#), ìàòðèöà A1 ≡ V1∗ AU1 èìååò â ïåðâîì ñòîëáöå òîëüêî îäèí íåíóëåâîéýëåìåíò, ðàâíûé σ1 :hiσ1 z ∗∗A1 = V1 AU1 = 0 A2 . ñèëó óíèòàðíîé èíâàðèàíòíîñòè ñïåêòðàëüíîé íîðìû, ||A1 || = σ1 . Ïîýòîìóh ih ihσ1 σz1 ≥ A1 σz1 ≥ σ12 + ||z||22 ⇒ σ12 ≥ σ12 + ||z||22 ⇒ z = 0 ⇒ A1 = σ01220A2i.Äàëåå áóäåì ðàññóæäàòü ïî èíäóêöèè. Åñëè äëÿ A2 óæå èìååòñÿ ñèíãóëÿðíîå ðàçëîæåíèå A2 = V2∗ Σ2 U2 , òî ñèíãóëÿðíîå ðàçëîæåíèå äëÿ A íàõîäèòñÿ ñ ëåãêîñòüþ. Äëÿýòîãî äîñòàòî÷íî âçÿòü1 01 0U = U1,V = V1,0 U20 V2Å.

Å. Òûðòûøíèêîâ183çàìåòèòü, ÷òî ìàòðèöû U è V óíèòàðíûå (êàê ïðîèçâåäåíèå óíèòàðíûõ ìàòðèö), èóáåäèòüñÿ â òîì, ÷òî âûïîëíÿåòñÿ ðàâåíñòâîσ1 0∗.V AU =0 Σ2Îñòàåòñÿ çàìåòèòü, ÷òî èíäóêöèÿ íà÷èíàåòñÿ ñ ïîñòðîåíèÿ ñèíãóëÿðíîãî ðàçëîæåíèÿ äëÿ ìàòðèö, ïðåäñòàâëÿþùèõ ñîáîé îäèí ñòîëáåö ëèáî îäíó ñòðîêó.Ïóñòü A = [a] ∈ Cm×1 ìàòðèöà-ñòîëáåö.  ýòîì ñëó÷àå íàéäåì â Cm îðòîíîðìèðîâàííûé áàçèñ v1 , . . .

, vm , íà÷èíàþùèéñÿ ñ v1 = a/||a||2 . ÒîãäàA = V ΣU ∗ ,Σ = [||a||2 , 0, . . . , 0]> ,V = [v1 , . . . , vm ],U = [1] ∈ C1×1 .Äëÿ ìàòðèöû-ñòðîêè ñèíãóëÿðíîå ðàçëîæåíèå ïîëó÷àåòñÿ òðàíñïîíèðîâàíèåì.2Ñëåäñòâèå 1. Ñïåêòðàëüíàÿ íîðìà ìàòðèöû ðàâíà åå ñòàðøåìó ñèíãóëÿðíîìó ÷èñëó.Ñëåäñòâèå 2. Ïóñòü ìàòðèöà A îáðàòèìà è σn åå ìëàäøåå ñèíãóëÿðíîå ÷èñëî.Òîãäà ||A−1 ||2 = 1/σn .Òåïåðü ÿñíî, ÷òî ñòàðøåå ñèíãóëÿðíîå ÷èñëî ìàòðèöû è ìëàäøåå ñèíãóëÿðíîå ÷èñëîîáðàòèìîé ìàòðèöû îïðåäåëåíû îäíîçíà÷íî.

Òî æå âåðíî äëÿ âñåãî íàáîðà ñèíãóëÿðíûõ ÷èñåë, íî ýòî ìû äîêàæåì ïîçæå. Ñèíãóëÿðíîå ðàçëîæåíèå âìåñòå åùå ñ ðÿäîìâàæíûõ ñëåäñòâèé çàñëóæèâàåò áîëåå îáñòîÿòåëüíîãî îáñóæäåíèÿ, êîòîðîå ìû âðåìåííî îòëîæèì ñ òåì, ÷òîáû âåðíóòüñÿ ê íåìó íà áîëåå ïîäãîòîâëåííîé ïî÷âå.Çàäà÷à.Äîêàçàòü íåðàâåíñòâîÇàäà÷à.ÏóñòüA = [aij ]Aíå√rankA ||A||2 .D = [dij ] êîìïëåêñíûå ìàòðèöû ïîðÿäêà n, ïðè ýòîì D äèàãîdii = aii ïðè 1 ≤ i ≤ n.

Äîêàæèòå, ÷òî åñëè ||A||2 = ||D||2 , òî íóëåâûõìåíüøå, ÷åì 2n − 2.èíàëüíàÿ ìàòðèöà ñ ýëåìåíòàìèýëåìåíòîâ â ìàòðèöå||A||F ≤184Ëåêöèÿ 27Ëåêöèÿ 2828.1Ìàòðèöà ëèíåéíîãî îïåðàòîðàÐàññìîòðèì ëèíåéíûé îïåðàòîð A : Vn → Vm , ãäå Vn è Vm ëèíåéíûå ïðîñòðàíñòâàðàçìåðíîñòè n è m (íàä îáùèì ïîëåì P ).Ôèêñèðóåì êàêîé-íèáóäü áàçèñ e1 , . . . , en â Vn è êàêîé-íèáóäü áàçèñ f1 , . . . , fm â Vm . ñèëó ëèíåéíîñòè îïåðàòîðà A,A(x1 e1 + . . .

+ xn en ) = x1 (Ae1 ) + . . . + xn (Aen ).(1)Ïîýòîìó A ïîëíîñòüþ îïðåäåëÿåòñÿ ñâîèì äåéñòâèåì íà áàçèñíûõ âåêòîðàõ e1 , . . . , en .Ðàçëîæèì îáðàçû áàçèñíûõ âåêòîðîâ ïî áàçèñó ïðîñòðàíñòâà îáðàçîâ:Aej = a1j f1 + . . . + amj fm ,j = 1, . . . , n.(2)Èç (1) è (2) ïîëó÷àåìA(x1 e1 + . . . + xn en ) = (a11 x1 + . . . + a1n xn ) f1 + . . . + (am1 x1 + . . . + amn xn ) fm .Ñëåäîâàòåëüíî,A(x1 e1 + .

. . + xn en ) = y1 f1 + . . . + ym fm  y1a11 . . . a1nx1... = ... ... .... . . .⇔ymam1 . . . amnxnÌàòðèöà, âîçíèêøàÿ ñïðàâà, íàçûâàåòñÿ ìàòðèöåé ëèíåéíîãî îïåðàòîðà A â ïàðå áàçèñîâ {ej } è {fi }.Òàêèì îáðàçîì, ëþáàÿ ôèêñèðîâàííàÿ ïàðà áàçèñîâ ïîðîæäàåò òðè èçîìîðôèçìàVn ↔ P n ,Vm ↔ P m ,L(Vn , Vm ) ↔ P m×n ,ãäå L(Vn , Vm ) ëèíåéíîå ïðîñòðàíñòâî âñåõ ëèíåéíûõ îïåðàòîðîâ, äåéñòâóþùèõ èçïðîñòðàíñòâà Vn â ïðîñòðàíñòâî Vm , à P m×n ëèíåéíîå ïðîñòðàíñòâî âñåõ m×n-ìàòðèöñ ýëåìåíòàìè èç ïîëÿ P .

Îòñþäà, â ÷àñòíîñòè, âèäíî, ÷òî ðàçìåðíîñòü ïðîñòðàíñòâàëèíåéíûõ îïåðàòîðîâ L(Vn , Vm ) ðàâíà mn.Ïðèìåð. ÏóñòüD:V →WW.V =Wf1 = 1, f2 = t, f3 = t2 â îïåðàòîð äèôôåðåíöèðîâàíèÿ íà ïðîñòðàíñòâå ìíîãî÷ëåíîâñòåïåíè 2 è íèæå. Ðàññìîòðèì áàçèñe1 = 1 + t, e2 = 1 − t, e3 = t2âVè áàçèñÎ÷åâèäíî,D(1 + t) = 1,Ïîýòîìó â ïàðå áàçèñîâe = {ei }èf = {fi }D(t2 ) = 2t.D(1 − t) = −1,ìàòðèöà ëèíåéíîãî îïåðàòîðà1 −1 00 2 .Aef =  000 0185Dèìååò âèä186Ëåêöèÿ 28W = V âûáðàòü òîò æå áàçèñ e1 , e2 , e3 ?e1 , e2 , e3 ïî òåì æå âåêòîðàì e1 , e2 , e3 :Êàêîé áóäåò ìàòðèöà òîãî æå îïåðàòîðà, åñëè âíóæíî íàéòè ðàçëîæåíèÿ îáðàçîâ âåêòîðîâD(1 + t) =28.211(1 + t) + (1 − t),221D(1 − t) = − (1 + t) −21/2 −1/2Aee =  1/2 −1/2001(1 − t),21−1  .0Äëÿ ýòîãîD(t2 ) = (1 + t) − (1 − t)⇒Ïðîèçâåäåíèå ëèíåéíûõ îïåðàòîðîâÏðîèçâåäåíèå ëèíåéíûõ îïåðàòîðîâ A : Vn → Vm è B : Vm → Vk îïðåäåëÿåòñÿ êàê êîìïîçèöèÿ îòîáðàæåíèé: BA ýòî îïåðàòîð èç Vn â Vk , çàäàííûé ïðàâèëîì (BA)(x) =B(Ax).

Характеристики

Тип файла
PDF-файл
Размер
1,77 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6384
Авторов
на СтудИзбе
308
Средний доход
с одного платного файла
Обучение Подробнее