13_glava (1055403)

Файл №1055403 13_glava (Лекции)13_glava (1055403)2017-12-27СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

370


13. Нейропроцессоры

13.1. История развития нейропроцессоров

С момента появления первых реально работающих ЭВМ до сегодняшнего дня принято разделять развитие ЭВМ на пять поколений, в соответствии с используемой для них элементной базой. Сейчас можно говорить о развитии нового, шестого поколения ЭВМ, принципиально отличающегося от предыдущих. Речь идет не о смене элементной базы, а об изменении принципа и архитектуры, а также области применения новых ЭВМ, в некоторой степени моделирующих работу человеческого мозга. На пороге третьего тысячелетия появился новый класс ЭВМ — нейрокомпьютеры.

Основные отличия нейрокомпьютеров от традиционной ЭВМ с архитектурой фон Неймана заключаются в следующем:

• большое число параллельно работающих элементов — нейронов (от нескольких

десятков до 106-108), что обеспечивает колоссальный скачок в быстродействии:

• вместо программирования используется обучение (воспитание) — машина учится решать задачи, изменяя параметры нейронов и связи между ними.

Попытки создания ЭВМ, моделирующих работу мозга, предпринимались еще давно специалистами по нейрокибернетике. Они стремились разработать само-

организующиеся системы, способные обучаться интеллектуальному поведению в процессе взаимодействия с окружающим миром, причем компонентами их систем обычно являлись модели нервных клеток. Однако зарождавшаяся в это же время вычислительная техника и связанные с нею науки, особенно математическая логика и теория автоматов, оказали сильное влияние на области исследования, связанные с мозгом.

Сформировался логико-символьный подход к моделированию

интеллекта. Развитие этого подхода породило такие направления, как эвристическое программирование и машинный интеллект, и способствовало угасанию интереса к нейронным сетям.

Таким образом, в течение длительного времени основным направлением в развитии искусственного интеллекта являлся логико-символьный подход, который может быть реализован на обычных компьютерах. Было получено решение многих «интеллектуальных» задач из определенных предметных областей. Однако самое сложное программное обеспечение, способное решать трудные задачи в специализированной области, отказывает, как только проблема выходит за рамки, определенные разработчиками при создании системы.

К концу 20 века созрели условия для возрождения интереса к нейросетевым

моделям. Это было связано с накоплением новых данных при экспериментальных

исследованиях мозга. Кроме того, развитие микроэлектроники и компьютерной техники, создав техническую базу для моделирования сложных нейронных систем, привело к пониманию того, что радикально увеличить производительность можно лишь за счет параллельной обработки данных, которая органически присуща нейронным сетям головного мозга.

На сегодняшний момент сотни фирм и лабораторий

Создание высокоэффективных нейрокомпьютеров требует изучения трех видов моделей нейронных сетей: физических, математических, технологических. Львиную долю публикаций по вопросам создания нейросетевых моделей составляют работы по реализации различных видов нейропроцессоров на основе СБИС, оптической. ПЛИС и т.д. технологий (технологические модели нейронных сетей). Однако подавляющее большинство аппаратных реализаций нейрокомпьютеров использует фоннеймановский процессор (универсальный или специализированный), которым не может обеспечить «истинного» параллелизма, свойственного биологическим нейронным сетям.

Работы по исследованию физических моделей нейронных сетей, в которых ото-

бражаются физические принципы функционирования головного мозга, привели к

созданию проекта Кремниевой Мозговой Коры (SCX – Silicon Cortex ), возглавляемого немецким биологом М. Маховальдом. Тем не менее, несмотря на значительные достижения в разработке физических моделей мозга, пока не создано такой модели, которая адекватно отображала бы работу мозга и позволяла бы генерировать новое знание. Более того, главная проблема - моделирование зрения, внимания, координированного управления поведением — не имеет удовлетворительного решения в рамках нейросетевой технологии.

С этих позиций наиболее важными представляются работы по созданию математических моделей нсйросетевых вычислении, которые позволяют отрабатывать и создавать новые принципы организации параллельной работы многих вычислительных элементов — формальных нейронов.

13.2 Искусственные нейронные сети

. Большое влияние на разработку теории искусственных

нейронных сетей оказал коннекционизм. Это — раздел искусственного интеллекта, связанный с созданием, исследованием и развитием моделей мозга (мышления) человека. С точки зрения коннекционизма (connection— «связь»), основу концепции построения нейронных сетей составляет идея о том, что нейроны можно моделировать довольно простыми автоматами, а вся сложность мозга, гибкость его функционирования и другие важнейшие качества определяются связями между нейронами. Каждая связь представляется как простой элемент, служащий для передачи сигнала. При таком подходе для нейросетевой модели характерно следующее:

• однородность системы (элементы нейронной сети одинаковы и простые, все

определяется структурой связи);

• надежность системы, построенной из ненадежных элементов, за счет избыточ-

ного числа связей;

• «голографичность», предопределяющая, что при разрушении части система

сохраняет свои свойства.

Предполагается, что широкие возможности систем связи: демаскирование старых связей и добавление новых — компенсируют бедность набора элементов, из которых строится модель, их ненадежность, а также возможные разрушения части связей.

На первых этапах развития нейросетевых математических моделей коннекцио-

низм сыграл исключительно важную роль, поскольку были поняты основные механизмы индуктивного вывода, осуществляемого нейронной сетью, позволившие решить большое количество прикладных задач. Однако для создания математических нейросетевых моделей, адекватных реальным задачам, требуются более глубокие исследования биологических принципов функционирования головного мозга.

Рассмотрим в общем виде функции сенсорных систем человека с точки зрения кибернетики.

Информацию об окружающем мире и о внутренней среде организма человек получает с помощью сенсорных систем, названных Павловым анализаторами. С точки зрения современной нейрофизиологии под сенсорными системами понимаются специализированные части нервной системы, состоящей из периферических рецепторов (органы чувств), отходящие от них нервные волокна (проводящие пути) и клетки центральной нервной системы, сгруппированные вместе в так называемые сенсорные центры.

В сенсорных органах происходит преобразование энергии стимула в нервный

сигнал (рецепторный потенциал), который трансформируется в импульсную активность нервных клеток (потенциалы действия). По проводящим путям эти потенциалы достигают сенсорных центров, на клетках которых происходит переключение нервных волокон и преобразование нервного сигнала (перекодировка). На всех уровнях сенсорной системы одновременно с кодирование и анализом стимулов осуществляется декодирование сигналов (считывание сенсорного кода). Декодирование осуществляется на основе связей сенсорных центров с двигательными и ассоциативными отделами мозга. Нервные импульсы клеток двигательных систем вызывают возбуждение или торможение. Результатом этих процессов является движение или остановка (действие и бездействие). Следует подчеркнуть, что природа носителя информации в сенсорных системах является электрической. Таким образом, основными функциями сенсорных систем являются: рецепция сигнала; преобразование рецепторного потенциала в импульсную активность проводящих путей; передача первичной активности в сенсорные центры; преобразование первичной активности в сенсорных центрах: анализ свойств сигналов; идентификация свойств сигналов; принятие решения

Нетрудно заметить, что приведенное в предыдущем абзаце описание восприятие человеком влияния внешней среды есть описание работы системы управления с ЦВМ в контуре в терминах физиологии. Роль датчиков системы управления играют рецепторы, роль управляющей ЦВМ — головной мозг человека, роль исполнительных механизмов — двигательная система человека (его мышцы), роль задатчика программного движения — головной мозг.

Очевидно, центральным звеном в биологических системах управления является

мозг, состоящий из более 100 млрд нервных клеток — нейронов, каждая из которых имеет в среднем 10 000 связей. .

Нейрон имеет тело (сому), дерево входов — дендритов, и выход — аксон (рис.13.1).

.


Рис.13.1

Длина дендритов может достигать 1 мм, длина аксона — сотен миллиметров. На соме и дендритах располагаются окончания других нервных клеток. Каждое такое окончание называется синапсом. Проходя через синапс, электрический сигнал меняет свою амплитуду: увеличивает или уменьшает. Это можно интерпретировать как умножение амплитуды сигнала на весовой (синаптический) коэффициент. Взвешенные в дендритном дереве входные занимаются исследованиями в области нейросетевых технологий. Разработаны ряд нейрокомпьютеров и нейромодулей, которые могут работать под управлением обычных ЭВМ и самостоятельно с существенно более высоким быстродействием. сигналы суммируются в соме и затем на аксонном выходе генерируется выходной импульс (спайк) или пачка импульсов. Выходной сигнал проходит по ветви аксона и достигает синапсов, которые соединяют аксон с дендритными деревьями других нейронов. Через синапсы сигнал трансформируется в новый входной сигнал для смежных нейронов. Этот сигнал может быть положительным или отрицательным (возбуждающим или тормозящим), в зависимости от вида синапса. Величина сигнала, генерируемого на выходе синапса, может быть различной даже при одинаковой величине сигнала на входе синапса. Эти различия определяются синаптическим коэффициентом (весом синапса), который может меняться в процессе функционирования синапса.

В настоящее время нейроны разделяют на три большие группы: рецепторные, промежуточные и эффекторные. Рецепторные нейроны предназначены для ввода сенсорной информации в мозг. Они преобразуют воздействие окружающей среды на органы чувств (свет на сетчатку глаза, звук на ушную улитку) в электрические импульсы на выходе своих аксонов. Эффекторные нейроны передают приходящие на них электрические сигналы исполнительным органам, например мышцам, также через специальные синапсы своих аксонов. Промежуточные нейроны образуют цен-

тральную нервную систему и предназначены для обработки информации, полученной от рецепторов и передачи управляющих воздействий на эффекторы.

Головной мозг человека и высших животных состоит из серого и белого вещества. Серое вещество есть скопление дендритов, аксонов и нейронов. Белое вещество образовано волокнами, соединяющие различные области мозга друг с другом, с органами чувств, мускулами. Волокна покрыты специальной миэлинированной оболочкой, играющей роль электрического изолятора. В мозге существуют структурно обособленные отделы, такие как кора, гиппокамп, таламус, мозжечок, миндалина и т.п. (рис.13.2). Каждый из отделов имеет сложное модульное строение. Особое место в мозге занимает церебральная кора, которая является его новейшей частью. В настоящее время принято считать, что именно в коре происходят важнейшие процессы ассоциативной переработки информации.

.



Рис.13.2

Связи между сенсорными областями и корой, между различными участками коры физически параллельны. Один слой клеток проецируется на другой, причем проекции состоят из множества разветвляющихся и сливающихся волокон (проекции дивергируют и конвергируют). В настоящее время наиболее изучен ввод в мозг зрительной информации. Возбуждение от сетчатки достигает коры топографически упорядоченным образом, т.е. ближайшие точки сетчатки активируют ближайшие точки коры. По реакции на зрительные стимулы различной сложности различают простые, сложные и гиперсложные нейроны. Имеется тенденция к усложнению рецепторных свойств нейронов по мере удаления от входных областей коры. Можно предположить, что функциональная роль нейронных структур, примыкающих к органам чувств, включая сенсорные области коры, заключается в преобразовании сенсорной информации путем выделения все более сложных и информативных признаков входных сигналов. Ассоциативная обработка получающихся при этом совокупностей сенсорных признаков осуществляется в ассоциативных зонах коры, куда поступают и другие сенсорные образы.

Приведенное весьма поверхностное описание принципа обработки информации в живой природе позволяет сделать вывод, что техническая кибернетика вплотную подошла к решению задачи управления в реальном времени методами, отшлифованными за миллионы лет «Создателем». Поэтому будет вполне резонным появление в настоящее время термина «нейроуправление», под которым понимается «область теории управления, занимающаяся вопросами применения нейронных сетей для решения задач управления динамическими объектами.»

Дадим определение нейрокомпьютера: нейрокомпьютером называют ЭВМ (аналоговую или цифровую), основной операционный блок (центральный процессор) которой построен на основе непрочной сети и реализует нейросетевые алгоритмы.

Весь класс задач, которые решают с помощью средств вычислительной техники, удобно разделить на три класса формализуемые, трудноформализуемые, не формализуемые.

Формализуемая задача имеет четко сформулированный алгоритм решения.

Причем, как правило, этот алгоритм учитывает класс машин, на котором будет решаться задача. Примером таких задач может быть интегрирование кинематических уравнений в бесплатформенных системах инерциальной навигации, вычисление элементарных функций, представленных рядами и т.п.

Трудноформализуемая задача имеет алгоритм решения, качество которого

трудно оценить или трудно оценить достижимость решения. Этот класс задач возникает из-за большой размерности моделируемых в этой задаче систем (известное выражение «проклятия размерности»), К таким задачам можно отнести моделирование сложных электронных устройств в системах автоматизированного проектирования, задачи интегрированной подготовки производства и т.д.

Неформализуемая задача имеет в своей постановке неявно заданные функции и параметры. К этому классу относят задачи распознавания образов, кластеризации идентификации информативных признаков и т.п. Необходимость решения таких задач породила появление реальных нейронных ЭВМ

13.3 Нейрокомпьютор

На рис.13.3 представлена структурная схема абстрактного нейрокомпьютера (НК). Такую схему можно назвать обобщенной потому, что она поясняет принцип работы любого НК независимо от его конкретного конструктивного исполнения.

Характеристики

Тип файла
Документ
Размер
10,24 Mb
Материал
Тип материала
Высшее учебное заведение

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов лекций

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6353
Авторов
на СтудИзбе
311
Средний доход
с одного платного файла
Обучение Подробнее