kolmogorov-gdz-11-№326-580 и 1-281 (991264), страница 9
Текст из файла (страница 9)
а) y`= ⎜ x;22⎜ 4 +5⎟⎝⎠4x + 54x + 5′⎛ e− x ⎞ − e− x x 2 + 2 − e− x ⋅ 2 x − e− x x 2 + 2 x + 2⎟ =б) y`= ⎜ 2=;22⎜ x + 2⎟⎝⎠x2 + 2x2 + 2′⎛ 3 x ⎞ 3 x ln 3 2 x + 5 x − 3 x (2 x ln 2 + 5 x ln 5)⎜⎟в) y`= x x ==2⎜2 +5 ⎟⎝⎠2x + 5xг) y`= ⎛⎜ 2− x ctg x ⎞⎟ = 2− x ln 2ctg x ⋅ (− x )′ − 2− x((=xx)((x)()()()x+ 5x)(())))x3 ⋅ 2 (ln 3 − ln 2) + 3 ⋅ 5 (ln 3 − ln 5)(212((=3 x (2 x ln 1,5 + 5 x ln 0,6)(2 x + 5 x ) 2;))1′ − 0,3− x ln 0,3 ⋅ x + 0,5 − 0,3− x ⋅⎛ 0,3− x ⎞x2⎟ =г) y`= ⎜.2⎜ x + 0,5 ⎟⎝⎠x + 0,5545. а) f(x) = xe5x; D(f) = R; f`(x) = e5x + 5xe5x = 5e5x(x+0,2);f`(x) = 0 при x = -0,2, f`(x) < 0 при x ∈ (-∞;-0,2), f′(x) > 0при x ∈ (-0,2;∞); f(x) убывает на (-∞;-0,2], f(x) возрастает на [-0,2;∞),min f ( x ) = f (−0,2) = −R1;5eб) f(x) = x22-x; D(f) = R; f`(x) = 2x⋅2-x + x2⋅ln2⋅(-x)`=2-x⋅x(2 – xln2);f`(x) = 0 при x = 0;–2;ln 2+0–2ln 2X73f(x) убывает на (-∞;0] и на ⎡⎢2⎞⎡ 2 ⎤; ∞ ⎟, f(x) возрастает на ⎢0;⎥;ln2⎣⎠⎣ ln 2 ⎦x = 0 – min f(x), f(0) = 0;x=2ln 22– max f(x), f ⎛⎜2 ⎞4⎟ = 2 2 ln 2 ;ln2⎝⎠ ln 2в) f(x) = xe-x; D(f) = R; f`(x) = e-x – xe-x = e-x(1 – x); f`(x) = 0 при x = 1,f(x) возрастает на (-∞;1], f(x) убывает на [1;∞),x = 1 – max f ( x ) = f (1) = 1 ;eR4xг) f(x) = x ⋅0,5 ; D(f) = R; f`(x) = 4x3⋅0,5x+x4⋅0,5xln0,5=0,5x⋅x3(4 – xln2);f(x) = 0 при x = 0;–4;ln 2+0–4ln 2Xf(x) убывает на (-∞;0] и на ⎡⎢4x = 0 – min f(x), f(0) = 0; x =4⎛ 4 ⎞ 2560,5 ln 2 .− max f(x); f ⎜⎟=ln 2⎝ ln 2 ⎠ ln 4 2⎣ ln 2⎞; ∞ ⎟, f(x)⎠возрастает на ⎡⎢0;4 ⎤⎥;⎣ ln 2 ⎦4546.
а) f(x) = e3-2x, F(x) = −1 3− 2xe+ C;2б) f(x) = 2⋅0,9x – 5,6-x, F(x) =в) f(x) = 2-10x, F(x) = − 0,1 ⋅2 ⋅ 0,9 x 5,6− x++ C;ln 0,9ln 5,62 −10 x+ C;ln 213г) f(x)=e3x +2,31+x =e3x +2,3⋅2,3x, F(x)= e3x + 2,311002,3x12,31+x+ C = e3x ++ C.ln2,33ln2,3547. а) S = ∫ e x dx = e x | = e − 1;1100⎛ 9x3x ⎞⎟ 1 9311822−−−+=|=−=;⎜ ln 9 ln 3 ⎟ 0 ln 9 ln 3 ln 9 ln 3 2 ln 3 ln 3 ln 3⎝⎠б) S = ∫ 9x dx − ∫ 3x dx = ⎜742в) S = ∫ 2 x dx =2x 2417| =−=;ln 2 −1 ln 2 2 ln 2 2 ln 2−11100⎞1⎛1⎝212г) S = ∫ e 2 x dx − ∫ e x dx = ⎜ e 2 x − e x ⎟ | = e 2 − e −⎠01⎛1⎞−1⎝ 3 ⎠1⎛e⎞ 1+ 1 = e⎜ − 1⎟ + .2⎝2 ⎠ 2x548.
а) S ADE = S ABCE − S ABCD = 2 ⋅ 3 − ∫ ⎜ ⎟ dx = 6 +=6−3− x 113−=| =6+ln 3 −13 ln 3 ln 38;3 ln 31б) SADE = SABCE – SABOD – SDOCK = SABCE – 2SDOCK = 2⋅e – 2∫ e x dx =01= 2e − 2e x | = 2e − 2e + 2 = 2;00⎛1⎞x2− x014в) S ABE = S ACDE − S BCDE = ∫ ⎜ ⎟ dx − 2 ⋅ 1 = −| −2=−+−2=ln 2 − 2ln 2 ln 2−2 ⎝ 2 ⎠=3− 2;ln 2750⎛1⎞x12− x0г) S AED = S ABCD − S ABOE − SOCDE = 3 ⋅ 4 − ∫ ⎜ ⎟ dx − ∫ 4 x dx = 12 +|−ln 2 − 2−2 ⎝ 2 ⎠0−4x 11441339| = 12 +−−+= 12 −−= 12 −.ln 4 0ln 2 ln 2 ln 4 ln 4ln 2 2 ln 2ln 242.
Производная логарифмической функции13⋅ ( 2 + 3x)`=;2 + 3x2 + 3x1+ cos x;б) y`= (log0,3 x + sin x)`=x ln 0,315в) y`= (ln(1 + 5 x))`=⋅ (1 + 5 x )`=;1 + 5x1 + 5x1г) y`= (lg x − cos x)`=+ sin x.x ln 10549. а) y`= ((ln(2 + 3x))`=550. а) y`= ( x 2 log 2 x)`=1 ⎛1⎞x(2 ln x + 1);⎜ 2 x ln x + x 2 ⋅ ⎟ =ln 2 ⎝x ⎠ ln 21′⋅ x − ln x ⋅ x`1 − ln x⎛ ln x ⎞;=б) y`= ⎜⎟ = x2xxx2⎝⎠1в) y`= ( x ln x)`= ln x + x ⋅ = ln x + 1;x551. а) f ( x) =761′ ln x − x ⋅⎛ x ⎞x = ln x − 1 .г) y`= ⎜⎟ =ln 2 xln 2 x⎝ ln x ⎠331, F ( x) = ln 7 x + 1 + C , x ≠ − ;77x + 1712−, F( x ) = ln x − 2 ln x + 5 + C , x ≠ -5, x ≠ 0;x x+514в) f ( x) =, F( x ) = ln x + 2 + C , x ≠ -2; г) f ( x) = , F( x ) = 4 ln x + C , x ≠ 0.x+2xб) f ( x) =1, f(0) = ln1 = 0, f′(0) = 1; y = x;x +111б) f `( x) = (lg x + 2)`=, f(1) = lg1 + 2 = 2, f `(1) =;x ln 10ln 1011x;( x − 1) =+2−y=2+ln 10ln 10ln 10222в) f `(x ) = (2 ln x )`= 2 , f(e) = 2 lne = 2, f `(e) = ; y = 2 + ( x − e) = x ;xeee11г) f `( x) = (log 2 ( x − 1))`=;, f ( 2) = log 2 1 = 0, f 1(2) =ln 2ln 2( x − 1)552.
а) f `( x) =y=x12.( x − 2) =−ln 2ln 2 ln 2717dx111553. а) ∫ 2dx = 2 ln x | = 2 ln 7 − 2 ln1 = 2 ln 7; б) ∫= − ln 3 − 2 x | = ln 5;2−1 21−13 − 2 x1 xeedx= ln x | = ln e − ln 1 = 1;11 xв) ∫33 1dx111= ln 3 x + 1 | = ln 10 − ln 1 = ln 10.x+33331300г) ∫554.1′⋅ ( x2 + 1) ⋅ 3 − ln(5 + 3x) ⋅ 2x3 x2 + 1 − 2x(5 + 3x) ln(5 + 3x)⎛ ln(5 + 3x) ⎞ 5 + 3xа) y`= ⎜⎜ 2⎟⎟ =;=22⎝ x +1 ⎠x2 + 1x2 + 1 (5 + 3x)(′′⎛⎞ ⎛ x ln 10 ⎞x⎟ =⎜⎟ =б) y`= ⎜⎜ lg(1 − 2 x ) ⎟ ⎜ ln (1 − 2 x ) ⎟⎝⎠ ⎝⎠ln 10((1 − 2 x ) ln (1 − 2 x ) + 4 x );=2 x (1 − 2 x ) ln 2 (1 − 2 x ))(ln 10 ⋅ ln (1 − 2 x ))( )2 ln 10 x+1 − 2x2 x=2ln (1 − 2 x )2 1⎛ x 2 ⎞ 2 x ln 5 x − x ⋅ 5 x ⋅ 5 x(2 ln 5 x − 1)⎜⎟в) y`=;==⎜ ln 5 x ⎟ln 2 5 xln 2 5 x⎝⎠1′(x + 1) − ln x 2 x(1 − ln x ) + 1⎛ log3 x 2 ⎞ ⎛ 2 ln x ⎞′2⎟ =⎜г) y`= ⎜⎟⎟ ==⋅.⋅ x⎜⎜ x + 1 ⎟ ⎝ (ln 3)(x + 1) ⎠ ln 3ln 3(x + 1)2x(x + 1)2⎝⎠77x ln x + 2ln x+=, D(f`)=(0;∞);x2 x2 x⎡1⎞1⎛ 1⎤f `( x ) = 0 при x =, f(x) убывает на ⎜⎜ 0; 2 ⎥, f(x) возрастает на ⎢ 2 ; ∞ ⎟⎟,e2⎣e⎠⎝ e ⎦555.
а) f(x)=x=1e2x ln x;D(f)=(0;∞); f `( x) =2⎛ 1 ⎞− min f(x) и f ⎜⎜ 2 ⎟⎟ = − ;ee⎝ ⎠ln xб) f ( x ) =; D(f)x1⋅ x − ln x1 − ln x= (0;∞); f `( x) = x 2, D(f`) = (0;∞);=xx2f`(x)=0 при x=e, f(x) возрастает на (0;e], f(x) убывает на [e;∞); x = e –точка max f(x) и f (e) =ln e 1= ;eeв) y=2x–lnx; D(f)=(0;∞); f `( x) = 2 −1 2( x − 0,5)=, D(f`) = (-∞;0)∪(0;∞);xxf`(x)=0 при x = 0,5; f(x) убывает на (0;0,5], f(x) возрастает на [0,5;∞),т.
x = 0,5 – min f(x) и f(0,5) = 1 + ln2;г) f(x) = xln x; D(f) = (0;∞); f `(x ) = ln x + x ⋅f`(x) = 0 при x =1x=e– min f(x)1,e1= ln x + 1; D(f`)x= (0;∞);f(x) убывает на ⎛⎜ 0; 1 ⎤⎥, f(x) возрастает на ⎡⎢ 1 ; ∞ ⎞⎟,e⎦⎝⎣e⎠11и f ⎛⎜ ⎞⎟ = − .ee⎝ ⎠556. а) f(x) = xln2x; D(f) = (0;∞); f `(x ) = ln 2 x + 2x ln x ⋅f`(x) = 0 при x = 1 и x =1e21= ln x (ln x + 2);x;⎛1⎤⎡1 ⎤и на [1;∞), f(x) убывает на ⎢ 2 ;1⎥;2⎥⎝ e ⎦⎣e ⎦⎛ 1 ⎞ 41x = 2 – max f(x) и f ⎜⎜ 2 ⎟⎟ = 2 , x = 1 – min f(x) и f(1) = 0;e⎝e ⎠ e′⎛ 2x ⎞2xln x − 1⎟⎟ = 2 ln 10 ⋅б) f ( x) =; D(f) = (0;1)∪(1;∞); f `( x) = ⎜⎜,xlg xlgln 2 x⎝⎠f(x) возрастает на ⎜⎜ 0;D(f′)=(0;1)∪(1;∞); f`(x) = 0 при x = e; f(x) убывает на (0,1) и на (1;e],f(x) возрастает на [e;∞), x = e – min f(x) и f(e) = 2eln10;в) f ( x ) =78ln xx;D(f) = (0;∞); f `(x) =11⋅ x−ln xx2 x( x)21=2 x(2 − ln x)x=2 − ln x2 x3,D(f`) = (0;∞);f`(x) = 0 при x = e2;f(x) возрастает на (0;e2], f(x) убывает на [e2;∞), x = e2–min f(x) и f(e2) =г) f ( x ) =11 x −11+ ln x; D(f)=(0;∞); f `( x) = −+ = 2 , D(f`)xx2 xx2;e= (-∞;0)∪(0;∞);f`(x) = 0 при x = 1;f(x) убывает на (0;1], f(x) возрастает на [1;∞), x=1–min f(x) и f(1) = 1.557.6⎛4⎞62⎝⎠2а) S ABCD = ∫ ⎜ 2 + ⎟dx = (2 x + 4 ln x ) | = 12 + 4 ln 6 − 4 − 4 ln 2 = 8 + 4 ln 3;x−1−12б) S ABCD = ∫ − dx = −2 ln x | = −2(ln1 − ln 4) = 4 ln 2;−4−4 x21121⎛1⎞3в) S = ∫ dx = ln x | = ⎜ ln 2 − ln ⎟ = ln 2;22⎝4⎠ 211 2x4−34⎛1⎞−3−6 ⎝⎠−6г) S = ∫ ⎜ 3 − ⎟dx = (3x − ln(− x) ) | = −9 − ln 3 + 18 + ln 6 = 9 + ln 2.x43.
Степенная функция558. а) f ( x) =3−x 2 ; D(f)53 −= (0;∞); f `( x) = − x 2 ;279б) f ( x) = x 3 ; D(f) = [0;∞); f `( x) = 3 x223−3 −1;1в) f ( x) = x 3 ; D(f) = [0;∞); f `( x) = x 3 ;г) f ( x) = x − 5 ; D(f) = (0;∞); f `( x) = − 5 ⋅ x −5 −1.559.а) f(x) = x-e; D(f) = (0;∞); f`(x) = -ex-e-1;б) f ( x ) = ⎛⎜x⎞⎟⎝3⎠− lg 5; D(f)= (0;∞); f `(x ) = −1⎛x⎞lg 5 ⋅ ⎜ ⎟3⎝3⎠в) f(x) = xπ; D(f) = [0;∞); f`(x) = πxπ-1;80− lg 5 −1;г) f(x) = (2x)ln3; D(f) = [0;∞); f`(x) = 2⋅ln3⋅(2x)ln3-1.560.1а) 24 3= (271− 3) 311 ⎞31 ⎞ 3 ⋅ 268⎛⎛= 3 ⋅ ⎜1 − ⎟ ≈ 3⎜1 −= 2 ≈ 2,89;⎟=99⋅3279⎝⎠⎝⎠⎛б) 4 625 ⋅ 3 = 54 3 = 5 ⋅ 4 1,34 + 0,14 ≈ 5 ⋅ 1,3 ⋅ ⎜⎜1 +⎝0,14 1 ⎞⋅ ⎟ ≈ 6,5 ⋅ 1,01 ≈ 6,57;2,85 4 ⎟⎠⎛0,25 ⎞⎟в) 3 81 = 33 3 = 33 1,43 + 0,25 ≈ 3 ⋅ 1,4 ⋅ ⎜⎜1 +≈ 4,2 ⋅ 1,03 ≈ 4,33;3 ⋅ 1,43 ⎟⎠⎝⎛г) 4 48 = 24 3 = 2 ⋅ 4 1,34 + 0,14 ≈ 2 ⋅ 1,3⎜⎜1 +⎝⎛0,14 ⎞⎟ ≈ 2,6 ⋅ 1,01 ≈ 2,63.2,85 ⋅ 4 ⎟⎠1⎞9⎠⎛561. а) 3 30 = 3 27 + 3 = 3 27 ⋅ 3 ⎜1 + ⎟ ≈ 3 ⋅ ⎜1 +⎝б) 4 90 = 4 81 + 9 = 4 81 ⋅ 4 1 +в) 9,02 = 9 ⋅ 1 +⎝1 ⎞⎟ ≈ 3,11;3⋅9 ⎠11 ⎞⎛≈ 3 ⋅ ⎜1 +⎟ ≈ 3,08;94⋅9⎠⎝21 ⎞⎛≈ 3 ⋅ ⎜1 +⎟ ≈ 3,003;900900⎝⎠г) 5 33 = 5 32 + 1 = 5 32 ⋅ 5 1 +11 ⎞⎛≈ 2 ⋅ ⎜1 +⎟ ≈ 2,01.325 ⋅ 32 ⎠⎝562.2а) Т.к.
f ( x ) = x 5 возрастает на R, тоб) т.к.4−f (x) = x 3min f ( x ) = f (1) = 1, max f ( x ) = f (32) = 4;[1;32][1;32]убывает на R, то1⎛1⎞max f ( x) = f ⎜ ⎟ = 16, min f ( x) = f ( 27) = ;81⎡1 ⎤⎝8⎠; 27⎡1 ⎤⎢ 8 ; 27 ⎥⎣⎦⎢8⎣⎥⎦⎛1⎞⎝ 2⎠в) т.к. f(x)=x-4 убывает на R, то max f ( x) = f ⎜ ⎟ = 16, min f ( x) = f (1) = 1;⎡1 ⎤⎢ 2 ; 2⎥⎣ ⎦⎡1 ⎤⎢ 2 ;1⎥⎣ ⎦813г) т.к.f (x) = x 4возрастает на R, то⎛ 1⎞ 1min f ( x) = f ⎜ ⎟ = , max f ( x) = f (81) = 27.⎤⎡1⎝ 16 ⎠ 8 ⎡ 1 ;81⎤;81⎢ 16⎣⎥⎦⎢ 16⎣12563.
а) f ( x) = − x −б) f ( x ) = x 23, F ( x) =2⎥⎦x−(, F ( x) = −3 +1x22 +1)2 − 2 +1+C=x1−2(1 − 2 )в) f(x) = 3x-1, F(x) = 3ln|x| + C; г) f ( x ) = x e , F ( x) =74 54⎛7117⎜⎝84dxб) ∫21x3= 4⋅x2− +183+ C;+ C;2 3 +1564. а) ∫ x 2 dx = 2 ⋅ x 2 | = 2 ⎜⎜ 22272(x e +1+ C.e +17⎞2⎟ 2− 1 2 ⎟ = ⋅ 27 − 1 = 36 ;7⎟ 7⎠())| = 12 3 8 − 3 1 = 12;2− +113e2e2ee()в) ∫ 2 x −1dx = 2 ln x | = 2 ln e 2 − ln e = 2;15 x 4 dx81г) ∫161+15⎛ 54 ⎞⎟x 4 81 ⎜ 4 4= 5⋅| = 4⎜ 3 − 2 4 ⎟ = 4 ⋅ 211 = 844.1⎟+ 1 16 ⎜⎝⎠41565. а) S = ∫ x 2 dx =0x2 +1 1|=2 +10112 +11;1⎛x3+⎞1⎟| =б) S ABE = S ACDE − S BCDE = ∫ dx − ∫ x 3 dx = ⎜⎜ ln x −⎟1x+3111⎝⎠2=−8213 +1− ln− 3 −12− 3 −11 22−1+=+ ln 2;23 +13 +12()32−0,8 +1 3232в) S = ∫ x − 0,8dx = x| = 55 x | = 5 5 32 − 1 = 5;15г) S = ∫3566.2) 2− 0,8 + 1 1151dx = ln x | = ln 5 − ln 3.x3≈ 1,4142, 3 3 ≈ 1,4422,2,5 ≈ 1,5811, 4 2 ≈ 1,18923 ≈ 1,7321, 4 2,5 ≈ 1,2574, 3 2,5 ≈ 1,3572, 4 3 ≈ 1,3161,.3) 2 = 1,42 + 0,04 = 1,42 ⋅ 1 +3⎛0.040,04 ⎞⎟ ≈ 1,4143;≈ 1,4⎜⎜1 +1,962 ⋅ 1,96 ⎟⎠⎝⎛0,2560,256 ⎞⎟ ≈ 1,4435;≈ 1,4⎜⎜1 +2,7443 ⋅ 2,744 ⎟⎠⎝3 = 3 1,43 + 0,256 = 3 1,43 ⋅ 3 1 +3 = 1,34 + 0,1439 = 1,34 ⋅ 1 +⎛0,14390,1439 ⎞⎟ ≈ 1,7326;≈ 1,69⎜⎜1 +2,85612 ⋅ 2,8561 ⎟⎠⎝⎛⎞15 41515⎟⎟ ≈ 1,2575;= 1,254 ⋅ 4 1 +≈ 1,25⎜⎜1 +256256 ⋅ 2,4414⎝ 4 ⋅ 256 ⋅ 2,4414 ⎠42,5 = 4 1,254 +32,5 = 3 1,33 + 0,303 = 3 1,33 ⋅ 3 1 +⎛0,3030,303 ⎞⎟ ≈ 1,3598;≈ 1,3⎜⎜1 +2,1973 ⋅ 2,197 ⎟⎠⎝43 = 4 1,34 + 0,1439 = 4 1,34 ⋅ 4 1 +⎛0,14390,1439 ⎞⎟ ≈ 1,3164;≈ 1,3⎜⎜1 +2,85614 ⋅ 2,8561 ⎟⎠⎝2,5 = 1,6 2 − 0,06 = 1,6 2 ⋅ 1 −⎛0,060,06 ⎞⎟ ≈ 1,5813;≈ 1,6⎜⎜1 −2,562⋅ 2,56 ⎟⎠⎝42 = 4 1,2 4 − 0,0736 = 4 1,2 4 ⋅ 4 1 −⎛0,07360,0736 ⎞⎟ ≈ 1,1787.≈ 1,2⎜⎜1 −⋅ 2,0736 ⎟⎠2,07362⎝567.