kolmogorov-gdz-11-№326-580 и 1-281 (991264), страница 3
Текст из файла (страница 3)
а) 4 16 = 2, 24 = 16 и 2 > 0; б) 7 − 1 = −1, (-1)7 = -1;в) 10 1024 = 2, 210 = 1024 и 2 > 0; г) 5 243 = −3, (-3)5 = -243.382. а) 17 1 = 1, 117 = 1; в) 3 − 343 = −7, (-7)3 = -343;б) 6 64= 2,26 = 64 и 2 > 0; г) 19 0 = 0, 019 = 0.21383. а) 3 − 27= 3 (−3) 3 = −3;б) 4 81 = 4 34 = 3;в) 5 − 32 = 5 (−2) 5 = −2; г) 3 64 = 3 4 3 = 4.4581 4 ⎛ 3 ⎞3384. а) 5 1 = 5 ⎛⎜ 1 ⎞⎟ = 1 ; б) 4= ⎜ ⎟ = ;32в) 3 −⎝2⎠2625⎝5⎠35427 3 ⎛ 3 ⎞381 4 ⎛ 3 ⎞3= ⎜ − ⎟ = − ; г) 4= ⎜ ⎟ = .822564⎝ 2⎠⎝4⎠385. а) x3 + 4 = 0; x = 3 − 4 = −3 4 ; б) x6 = 5; x = ± 6 5 ;в) x3 = 4; x = 3 4 ; г) x4 = 10; x = ± 4 10 .386.
а) x10 – 15 = 0; x10 = 15; x = ± 10 15 ;б) x7 + 128 = 0; x7 = -128; x = 7 − 128 = −2;в) x6 – 64 = 0; x6 = 64; x = ±2; г) x5 = 3; x = 5 3 .387.а) 16x4 – 1 = 0; x4 =x = ±41;16б) 0,01x3 + 10 = 0; x3 = -1000;x = 3 − 1000 = −10;11=± ;162в) 0,02x6 – 1,28 = 0; x6 = 64;x = ± 6 64 = −2 ;3434г) 12 − x 2 = 0; x2 = 17;x = ± 17 .388.а) 3 x = −0,6;x = -0,216;(3 x )3 = (− 0,6)3 ;б) 4 x = 3;(4 x )4 = 34 ; x = 81;7( x )2 = 52 ; x = 25;г) 7 x = −1; (7 x ) = (− 1)7 ; x = -1.5544389. а) (− 4 11 ) = (− 1)4 ⋅ (4 11 ) = 11 б) (25 − 2 ) = (− 2)5 ⋅ (5 2 ) = −32 ⋅ 2 = −64;663в) (3 7 ) = 3 7 3 = 7; г) (− 6 2 ) = (− 1)6 (6 2 ) = 2.в) x = 5;390.а) 4 16 ⋅ 625 = 4 16 ⋅ 4 625 = 2 ⋅ 5 = 10;в) 3 8 ⋅ 343 = 3 8 ⋅ 3 343 = 2 ⋅ 7 = 14;б) 5 32 ⋅ 243 = 5 32 ⋅ 5 243 = 2 ⋅ 3 = 6;г) 4 0,0001 ⋅ 16 = 4 0,0001 ⋅ 4 16 = 0,1 ⋅ 2 = 0,2.391.
а) 5 160 ⋅ 625 = 5 32 ⋅ 5 55 = 2 ⋅ 5 = 10;б) 3 24 ⋅ 9 = 3 8 ⋅ 27 = 3 8 ⋅ 3 27 = 2 ⋅ 3 = 6;22в) 4 48 ⋅ 27 = 4 16 ⋅ 81 = 4 16 ⋅ 4 81 = 2 ⋅ 3 = 6;г) 3 75 ⋅ 45 = 3 125 ⋅ 27 = 3 125 ⋅ 3 27 = 5 ⋅ 3 = 15.392.а) 3 9 ⋅ 6 9 = 3 9 ⋅ 3 3 = 3 27 = 3; б) 7 16 ⋅ 7 − 8 = 7 − 128 = −2;в) 5 27 ⋅ 5 9 = 5 243 = 3; г) 3 − 25 ⋅ 6 25 = 3 − 25 ⋅ 3 5 = 3 − 125 = −5.393.
а)в)33− 6253= 3 125 = 5; б)−5412848=4128 4= 16 = 2;86243 3128 6 128 6=3 −= − 27 = −3; г) 6== 64 = 2.92−922433394.646411964625 3 − 100: 3⋅ 4 39 : 3 − 3=6⋅=4100000000162710000000016272531515=3⋅ ⋅3=3=−= −0,15;2100− 100− 100000010000а) 6б) 5 1511⋅ 4,5 −16в) 5 −59288=5243 317⋅ −4=1024273812г) 4 3 ⋅ 1 +44580=427 9 5 1⋅ −=16 2325− 24351024⋅3− 12532755=24332−1 3 1= − = 1;2 2 2− 3 ( −5) 51⋅= =1 ;4344427 ⋅ 3 4 581 4 13 1+=+= + = 2;8⋅280 4 1616 2 2395.а) 1 < 4 2 < 2, т.к. 14 < 2 < 24; 1,1 < 4 2 < 1,2, т.к.
1,14 < 2 < 1,24;1,18 < 4 2 < 1,19, т.к. 1,184 < 2 < 1,194; 4 2 = 1,18...;б) 1 < 3 5 < 2, т.к. 13 < 5 < 23; 1,7 < 3 5 < 1,8, т.к. 1,73 < 5 < 1,83;331,70 < 3 5 < 1,71, т.к. 1,7 < 5 < 1,71 ; 3 5 = 1,70...;22в) 2 < 7 < 3, т.к. 2 < 7 < 3 ; 2,6 < 7 < 2,7, т.к. 2,62 < 7 < 2,72;222,64 < 7 < 2,65, т.к. 2,64 < 7 < 2,65 ; 7 = 2,64...;33г) 1 < 3 3 < 2, т.к.
1 < 3 < 2 ; 1,4 < 3 3 < 1,5, т.к. 1,43 < 3 < 1,53;331,44 < 3 3 < 1,45, т.к. 1,44 < 3 < 1,45 ; 3 3 = 1,44....396.а) 3 10,17 ≈ 2,17;б) 71 ≈ 8,43;в) 13,21 ≈ 3,63;г) 3 11 ≈ 2,22.397.а) 9 13,7 ≈ 1,34;б) 6 10 ≈ 1,47;в) 4 2,8 ≈ 1,29;г) 8 13 ≈ 1,38.23398.524 25 5, т.к. 0,4 =<= ;1260 60 12а) 5 0,2 > 0, т.к. 0,2>0 и 5 0 = 0;б) 12 0,4 < 12в) 7 1,8 > 1, т.к.
1,8 > 1 и 7 1 = 1;г) 8 0,2 < 8 0,3 , т.к. 0,2 < 0,3.2399. а)б) 1811 ⎛ 1⎞1132 = 3 ⋅ 3 2 = 3 ; ⎜6 ⎟ = 3 ;24 ⎜⎝ 2 ⎟⎠8223⎛ 1⎞1 311< , т.о. 3 2 < ⎜ 6 ⎟ ;⎜ 2⎟422⎠⎝3 300 3013 18< 0,43 , т.к. =<= 0,43;77 700 700в) 5 2 < 5 3 , т.к. 2 < 3; г) 8 0,8 < 1, т.к.
0,8 < 1 и 1 = 8 1.400. а) 0,3 = 10 0,35 = 10 0,00243 ; 5 0,05 = 10 0,052 = 10 0,0025 ;10 0,0025> 10 0,00243 , т.о.0,3 < 5 0,05 ;б) 3 4 = 15 4 5 = 15 1024 ; 5 8 = 15 83 = 15 512 ; 15 1024 > 15 512 , т.о. 3 4 > 5 8 ;в) 3 7 = 6 7 2 = 6 49 ;649 > 6 40 , т.о.37 > 6 40 ;г) 5 = 8 54 = 8 625 ; 8 625 > 8 500 , т.о.5 > 8 500 .401.а) 3 − 0,4 = −15 0,45 = −15 0,01024 ;15 0,010245− 0,3 = −15 0,33 = −15 0,009 ;< 15 0,009 ,−15 0,01024 > −15 0,009 ; т.о.б) 5 − 5 = −5 5 = −15 53 = −15 125 ;− 15 125 > 15 243 , т.о.5315в) 3 − 2 = −3 2 > −3 4 = 3 − 4 ;15515− 3 = − 33 = −15 27 ;3125 > 15 27 , − 15 3125 < −15 27 ,3− 5 < 5 − 3.402.а) 6 64a8b11 = 6 (2ab) 6 ⋅ 6 a 2b5 = 2ab6 a 2b5 ;б) 5 − 128a 7 = −5 (2a)5 ⋅ 5 4a 2 = −2a5 4a 2 ;в) 4 6a12b6 = 4 (a3b)4 ⋅ 4 6b 2 = a3b 4 6b 2 ;г) 3 54a10 = 3 (3a 3 )3 ⋅ 3 2a = 3a 3 3 2a .24− 0,4 > 5 − 0,3 ;− 3 = −3 3 = − 35 = −15 243 ;− 5 > 3 − 3;г) 3 − 5 = −15 55 = −15 3125 ;3403.
а) − b 4 3 = −4 b 4 ⋅ 4 3 = − 4 3b 4 ; б) ab85b35b38= a8b8 ⋅ 8a7a78= 5ab11 ;г) − ab3 − 4 = 3 − a 3b3 ⋅ 3 − 4 = 3 4a 3b3 .в) a 4 7 = 4 a 4 ⋅ 4 7 = 4 7a 4 ;404.а) a2 = a , a = −a справедливо только при а≤0, т.о.a 2 = − a при а≤0;б) 3 a 3 = a при любом а;в) 5 a 5 = a, a = a справедливо только при а≥0, т.о.5г) 4 a 4 = a , a = a справедливо только при а≥0, т.о.a 5 = a при а ≥ 0;4a 4 = a при а ≥ 0.405.а) 3 a 3 = a прилюбом а, а = -а при а = 0, значит 3 a 3 = −a при а = 0;б) 6 a 6 = a , a = −a при а ≤ 0, значит 6 a 6 = −a при а ≤ 0;в) 4 a 4 = a при любом а; г) 7 a 7 = a при любом а.3406.
а)б)7− 5a− 26 +16 −1407. а) 3в)4x4 43122=3( 7 + 5 );2a2 − 2 2 + 2( 5) − ( 2)3=2a ⋅ 2232344 434x 44=4a2 − 23==42 42343;5− 2;3a3 2x− x; б)=22 x535 52 x5=5 545 53 52 4 ⋅ 34=5=x −1;2625.351366 ⋅ 32 ⋅ 53616 ; б) 5== 5 9 ⋅ 125 ;555521527 ⋅ 253 ⋅ 5544г)x ( x − 1)5=3 ⋅ 2 2 ⋅ 334=64 2 2=;xx324=2( 6 + 1) 2 6 + 1 + 2 6 7 + 2 6==.555a=408. а) 3в) 4==5− 2=5+ 2г)( 7 ) − ( 5)a 2 − ( 2 )21в)2(a − 2 ) 2=a+ 23( 7 + 5 )==10 10 2 2 10 51344 ⋅ 27 = 4 108 ; г) 5 ==4 = 55 4 .5 56228225409.а) 12 253 = 12 56 = 5 ; б) 3142 =3241 4 1 14 3==2 = 0,54 8 ;82 2в) 8163 8 212 ⋅ 34 2 8 4 4 2==2 ⋅3 =6;813338г) 41 1211351 12125 = 12 3 =5 ⋅ 49 =5 ⋅ 26 ⋅ 212 = 12 320 .44424410.а) 3 x − 56 x + 6 = 0; 6 x = t; t ≥ 0;t2 – 5t + 6 = 0; t1 = 2, t2 = 3;6 x = 2, x = 26 = 64;6 x = 3, x = 36 = 729;в) x − 34 x + 2 = 0; 4 x = t; t ≥ 0;t2 – 3t + 2 = 0; t1 = 1, t2 = 2;4 x = 1, x = 1; 4 x = 2, x = 24 = 16;411.а)+–−43б) x + 2 x = 2; 4 x = t; t ≥ 0;t2 + t – 2 = 0; t1 = -2, t2 = 1;4 x = −2 - не имеет решений;4 x = 1, x = 1;г) 3 x − 56 x = 6; 6 x = t; t ≥ 0;t2 – 5t – 6 = 0; t1 = -1, t2 = 6;6 x = −1 - не имеет решений;6 x = 6, x = 66 = 46656.+б)x11 ≥ 7; x = 11 7 ;Ответ: 11 7 ; ∞ .г)–[)− 10 2412.а)+-3433 x < −7; x = (-7)3 = -343;Ответ: (-∞;-343).в)–+83 x > 2; x = 8; Ответ: (8;∞).26+35x3 ≤ 5; x = 3 5 .Ответ: − ∞;−3 5 .(− ∞;−10 2 )∪ (10 2 ; ∞).–)10 2x10 > 2; x1 = − 10 2 , x2 = 10 2 .Ответ:+11 7x4 < 3; x1 = − 4 3 , x2 = 4 3 .Ответ: − 4 3 ; 4 3 .
.в)+–+(–43](б)–06 x ≥ 2;+6x = 64.Ответ: [64; ∞ ).г)–+0814 x ≤ 3; x = 81. Ответ: [0; 81].413.а) 6 a 6= a = −a , гдеб) 4 а 4= a = a , гдев) 5 а 5а ≤ 0;= a;а ≥ 0;414. а) 3 a 3 − a 2 = a − a = a + a = 2a, где а ≤ 0;б) 4 a 4 + 27 a 7 = a + 2a = a + 2a = 3a, где а ≥ 0;в) 5 a 5 − 6 a 6 = a − a = a − a = 0, где а ≥ 0;г) 3 a 3 + 38 a8 = a + 3 a = a − 3a = −2a, где а ≤ 0.415. а) 3 10 + 73 ⋅ 3 10 − 73 = 3 10 2 − ( 73 ) 2 = 3 27 = 3;б)3(4 + 17 ) 234 − 17+ 17 =( 4 + 17 )3334 2 − ( 17 ) 2()+ 17 = − 4 + 17 + 17 = −4;в) 4 9 − 65 ⋅ 4 9 + 65 = 4 9 2 − ( 65 ) 2 = 4 16 = 2;г) 3 − 5 ⋅ 3 + 5 = 32 − ( 5 ) 2 = 4 = 2.416. а)313=2 −33(332 2 + 3 2 ⋅ 3 + 32= −3 4 − 3 6 − 3 9 ;3 2 ⎞3 ⎛3 232 − 3 ⎜ 2 + 2⋅3 + 3 ⎟⎝⎠)33⎛⎞⎛⎞2⎜ a 2 + a3 b + b 2 ⎟2⎜ a 2 + a 3 b + b 2 ⎟⎠⎝⎠;⎝б)==33 2⎞3 ⎛ 23a−3ba−ba − b ⎜a + a b + b ⎟⎝⎠2()3⎞⎛32⎜ 52 − 3 5 ⋅ 7 + 7 2 ⎟⎠⎝в) 3==3 2⎞33 ⎛3 235 +375 + 7 ⎜ 5 − 5⋅7 + 7 ⎟⎝⎠2г)()3a3233a − ab + b2=(325 − 3 35 + 3 49;6)(()3a 3 a + 3 b3a 3 a + 3 b=.3 2⎞3a+b⎛3 2 33−++aabbab⎜⎟⎝⎠)33.
Иррациональные уравнения417.а) x 4 + 19 = 10 ⇔ x4 + 19 = 100 ⇔ x4 = 81 ⇔ x ±3;б) 3 x 2 − 28 = 2 ⇔ x2 – 28 = 8 ⇔ x2 = 36 ⇔ x = ±6;272⎧⎧ 2в) 61 − x 2 = 5 ⇔ ⎨ 61 − x2 ≥ 0, ⇔ ⎨ x 2 ≤ 61, ⇔ x = ±6;⎩61 − x = 25;⎩ x = 36г) 3 x − 9 = −3 ⇔ x − 9 = −27 ⇔ x = −18.418.⎧ x + 1 = ( x − 5) 2 ,⎧⎡ x = 3,⎧ x 2 − 11x + 24 = 0,⎪⎪⎪⇔ ⎨⎢⎣ x = 8; ⇔ x = 8 ;а) x + 1 = x − 5 ⇔ ⎨ x − 5 ≥ 0, ⇔ ⎨x ≥ 5,⎪⎩⎪⎩ x + 1 ≥ 0;⎪⎩ x ≥ 5;x ≥ −1;⎧ 2⎧2 x + 3 = (6 − x)2 , ⎪x − 14x + 33 = 0, ⎧⎡ x = 3,⎪⎪⎪x ≤ 6,⇔ ⎨⎢⎣ x = 11; ⇔ x = 3 ;⇔⎨б) x + 2x + 3 = 6 ⇔ ⎨ 6 − x ≥ 0,3⎪⎩ x ≤ 6;⎪⎩ 2x + 3 ≥ 0;⎪x≥− ;⎪⎩2⎧ 2⎧2 x − 1 = ( x − 2) 2 , ⎪ x − 6 x + 5 = 0, ⎧⎡ x = 1,⎪⎪⎪x ≥ 2;⇔⎨⇔ ⎨⎢⎣ x = 5; ⇔ x = 5 ;в) 2 x − 1 = x − 2 ⇔ ⎨ x − 2 ≥ 0;1⎪⎩ 2 x − 1 ≥ 0⎪⎪⎩ x ≥ 2;x≥2⎩⎪⎧ x 2 − 9 x + 8 = 0,⎧3 x + 1 = ( x − 3) 2 ,⎧⎡ x = 1,⎪⎪⎪⎪x ≥ 3,г) 3 + 3x + 1 = x ⇔ ⎨ x − 3 ≥ 0,⇔⎨⇔ ⎨⎢⎣ x = 8; ⇔ x = 8 .1⎪⎩ 3x + 1 ≥ 0;⎪⎪⎩ x ≥ 3;x≥− ;⎪⎩3419.2⎧⎧ 2а) 2 x + 1 = x 2 − 2 x + 4 ⇔ ⎨2 x + 1 = x − 2 x + 4, ⇔ ⎨ x − 4 x + 3 = 0, ⇔⎩2 x + 1 ≥ 0;⎩x ≥ −0,5;⎧ ⎡ x = 1,x = 1,⎪⇔ ⎨ ⎢⎣ x = 3; ⇔ 1см.x2 = 3;⎪⎩ x ≥ −0,5;⎧⎧x = x2 − x − 3, ⎧x2 − 2x − 3 = 0, ⎪ ⎡ x = −1,⎪ ⎢⎣ x = 3;⎪⎪б) x = x − x − 3 ⇔ ⎨ x ≥ 0,⇔ x =3;⇔⎨1 + 13 ⇔ ⎨;⎪x ≥ 1 + 13 ;⎪ x2 − x − 3 ≥ 0; ⎪ x ≥2⎩⎩⎪⎩2⎧ x + 2 = 2 x − 3,x = 5,⎪в) x + 2 = 2 x − 3 ⇔ ⎨ x + 2 ≥ 0, ⇔ ⎧⎨⇔ x=5;x⎩ ≥ 1,5;⎪⎩ 2 x − 3 ≥ 0;2⎧⎡ x = −1,⎧9 − x 2 = 9 + x,⎪⎢ x = 0;x( x + 1) = 0,⎧⎪⎪⎣x = −1,⎪г) 9 − x 2 = x + 9 ⇔ ⎨ 9 − x 2 ≥ 0, ⇔ ⎨ x ≥ −3, ⇔ ⎨ x ≥ −3, ⇔ 1x2 = 0;⎪ x + 9 ≥ 0;⎪⎩ x ≤ 3;⎪ x ≤ 3;⎩⎪⎩28420.x1 = 2,x⎣ 2 = 4;а) x = 3 x3 + x 2 − 6 x + 8 ⇔ x3 + x 2 − 6 x + 8 = x3 ⇔ x 2 − 6 x + 8 = 0 ⇔ ⎡⎢б) x − 2 = 3 x 2 − 8 ⇔ ( x − 2)3 = x 2 − 8 ⇔ x3 − 6 x 2 + 12 x − 8 = x 2 − 8 ⇔⎡ x1 = 0,⇔ x( x 2 − 7 x + 12) = 0 ⇔ ⎢ x2 = 3,⎢ x = 4;⎣ 3x1 = −10,⎣ x2 = 2;в) x = 3 x3 − x2 − 8x + 20 ⇔ x3 = x3 − x2 − 8x + 20 ⇔ x2 + 8x − 20 = 0 ⇔ ⎡⎢г) x + 1 = 3 x 3 + 2 x 2 + x ⇔ ( x + 1)3 = x3 + 2 x 2 + 2 ⇔ x 3 + 3x 2 + 3x + 1 == x3 + 2 x 2 + x ⇔ x 2 + 2 x + 1 = 0 ⇔ x = −1.421.⎧⎪ 3 x + 23 y = 1,⎧⎪ 3 x + 23 y = 1,⎧⎪3 x + 23 y = 1, ⎧⎪3 y = 1 (1 − 3 x ),⇔⎨ 3⇔⎨⇔⇔⎨ 3233⎪⎩3 x − 3 y = 10; ⎪⎩6 x − 23 y = 20; ⎪⎩ 7 x = 21;⎪⎩x = 3;⎧⎪3 y = −1,⎧ y = −1⇔⎨3⇔⎨;⎩ x = 27⎪⎩ x = 3;а) ⎨⎧⎪124 x − 34 y = 6 2 ,⎧⎪ 44 x − 4 y = 2 2 ,⎧⎪4 y = 44 x − 2 2 ,⇔⎨⇔⇔⎨ 44⎪⎩ 144 x = 14 2 ;⎪⎩2 x + 34 y = 8 2 ; ⎪⎩ 2 x + 34 y = 8 2 ;⎧⎪4 y = 44 x − 2 2 ,⎧ y = 64⇔⎨⇔⎨;4⎩x=4⎪⎩x = 2;б) ⎨⎧⎪− 84 x − 44 y = −28,⎧⎪ 24 x + 4 y = 7,⎧⎪4 y = 7 − 24 x ,⇔⎨⇔⇔⎨44⎪⎩ − 114 x = −22;⎪⎩44 y − 3 x = 6; ⎪⎩ − 3 x + 44 y = 6;в) ⎨⎧⎪4 y = 7 − 2 ⋅ 2,⎧ y = 81⇔⎨⇔⎨;⎩ x = 16⎪⎩ 4 x = 2;⎧⎪ x = 5 5 − 3 y ,⎧⎪2 x + 6 y = 10 5 ,⎧⎪ x + 3 y = 5 5 ,⇔⎨⇔⇔⎨⎪⎩ 11 y = 11 5 ;⎪⎩5 y − 2 x = 5 ; ⎪⎩ − 2 x + 5 y = 5 ;⎧⎪ x = 5 5 − 3 5 ,⎧ x = 20⇔⎨⇔⎨.y = 5;⎪⎩⎩ y=5г) ⎨422.⎧⎡ x = −10,⎧( x + 1)(x + 6) = 36,⎧ 2⎪x + 7 x − 30 = 0, ⇔ ⎪⎢ x = 3; ⇔ x = 3 ;x + 1 ≥ 0,⎨⎨⎣x ≥ −1;⎩⎪⎩⎪⎩ x ≥ −1;x + 6 ≥ 0;а) x + 1 ⋅ x + 6 = 6 ⇔ ⎨29⎧ ( x − 1) ⋅ (2 x − 1) = x + 1, ⎧( x − 1)(2 x − 1) = ( x + 1)2 ,⎪⎪б)= x +1 ⇔ ⎨⇔⎨x − 1 ≥ 0,⇔x − 1 ≥ 0,2x − 1⎪⎪2 x − 1 > 0;2 x − 1 > 0;⎩⎩x +1⎧2 x 2 − 3 x + 1 = x 2 + 2 x + 1,⎪x ≥ 1,⇔⎨⇔⎪x > 0,5;⎩в)⎧ x 2 − 5 x = 0,⇔⎨⎩ x ≥ 1;⎧⎡ x1 = 0,⎪⎢⎨⎣ x2 = 5; ⇔ x = 5 ;⎪⎩ x ≥ 1;⎧ 3x + 2 ⋅ x − 2 = x + 6, ⎧(3x + 2)(x − 2) = ( x + 6)2 ,⎪⎪= 3x + 2 ⇔ ⎨3x + 2 ≥ 0,⇔⎨⇔x − 2 > 0;x−2⎪⎩⎪x − 2 > 0;3x + 2 ≥ 0⎩x+6⎧⎡ x1 = −2,2⎧ 2⎧ 2⎪⇔ ⎨3x − 4 x − 4 = x + 12x + 36, ⇔ ⎨2 x − 16x − 40 = 0, ⇔ ⎨⎢⎣ x2 = 10; ⇔ x = 10 ;x2;x2;>>⎩⎩⎪⎩ x > 2;⎧ x( 2 − x) = 4 x 2 , ⎛ 2 x − x 2 = 4 x 2 ,⎜⇔⎜⇔x ≥ 0,x ≥ 0,⎜⎪ 2 − x ≥ 0;x ≤ 2;⎩⎝г) x 2 − x = 2 x ⇔ ⎪⎨⎧⎡ x1 = 0,⎧5 x( x − 0,4) = 0, ⎪⎪⎢⎣ x2 = 0,4;x = 0,⎪⇔⎨⇔ ⎨ x ≥ 0, ⇔ 1x ≥ 0,x2 = 0,4;⎪⎩⎪ x ≤ 2;x ≤ 2;⎪⎩423.