kolmogorov-gdz-10- №1-325 (991260), страница 6
Текст из файла (страница 6)
Примеры решения тригонометрических уравненийсистем уравнений.164.а) 2sin2 x + sin x – 1 = 0; t = sin x; 2t2 + t – 1 = 0;πt = −1; x = − 2 + 2πn, n ∈ z; 1 ⇔ t = ; x = (−1) k π + πn, n ∈ z;26б) 3sin2 x – 5sin x – 2 = 0; t = sin x; 3t2 – 5t – 2 =0;11k +1t = − 3 ; ⇔ x = (−1) arcsin 3 + πk , k ∈ z; ⇔t = 2;∅;8813x = (-1)k+1arcsin + πk , k ∈ z;в) 2sin2 x – sin x – 1 = 0; t = sin x; 2t2 – t – 1 = 0;n +1 π1 x = (−1) 6 + πn, n ∈ z;t=−;2 ⇔ t = 1; x = π + 2πn, n ∈ z;2г) 4sin2 x + 11sin x – 3 = 0; t = sin x; 4t2 + 11t – 3 = 0;1 1nt = 4 ; ⇔ x = (−1) arcsin 4 + πn, n ∈ z; ⇔t = −3;∅;1x = (-1)narcsin + πn , n ∈ z.4165.а) 6cos2 x + cos x – 1 = 0; t = cos x; 6t2 + t – 1 = 0;2π1 x = ± 3 + 2πn, n ∈ z;t = − 2 ;⇔ 1 x = ± arccos 1 + 2πn, n ∈ z;t = ;3 3б) 2sin2 x + 3cos x = 0; 2cos2 x – 3cos x – 2 = 0; t = cos x;2t2 – 3t – 2 = 0;2π1t = − 2 ; ⇔ x = ± 3 + 2πn, n ∈ z; ⇔∅;t = 2;2πx= ±+ 2πn , n ∈ z;3в) 4cos2 x – 8cos x + 3 = 0; t = cos x; 4t2 – 8t + 3 = 0; 1πt = 2 ;x = ± + 2πn, n ∈ z;⇔ ⇔3∅;t = 3 ;2πx = ± + 2πn , n ∈ z;3г) 5sin2 x + 6cos x – 6 = 0; 5cos2 x – 6cos x + 1 = 0; t = cos x;1 1t = 5 ; ⇔ x = ± arccos 5 + 2πn, n ∈ z;t = 1; x = 2πn, n ∈ z.89166.а) 2cos2x + sinx + 1 = 0; 2sin2x – sinx – 3 = 0; t = sinx;2t2 – t – 3 = 0; t = –1; t = 1,51) sinx = –1; x = –π+ 2πn, n ∈ Z;22) sinx = 1,5 – не имеет решений. π+ 2πn / n ∈ Z . 2Ответ: −б) cos2x + 3sinx = 3; sin2x – 3sinx + 2= 0; t = sinx;t2 – 3t + 2 = 0; t = 1, t = 2;1) sinx = 1; x =π+ 2πk, k ∈ Z;22) sinx = 2 – не имеет решений.π2Ответ: + 2πk / k ∈ Z .в) 4cosx = 4 – sin2x; cos2x – 4cosx + 3 = 0; t = cosx;t2 – 4t + 3 = 0; t = 1, t = 3;1) cosx = 1, x = 2πk, k ∈ Z;2) cosx = 3 – не имеет решений.Ответ: {2πn/n ∈ Z}.г) 8sin2x + cosx + 1 = 0; 8cos2x – cosx – 9 = 0; t = cosx;988t2 – t – 9 = 0; t = –1, t = ;1) cosx = –1, x = π + 2πn, n∈ Z;2) cosx =9– не имеет решений;8Ответ: {π + 2πn/n ∈ Z}.167.13а) 3tg2x + tgx – 1 = 0; tgx = t; 3t2 – 2t – 1 = 0; t = –1, t = ;π+ πk, k ∈ Z;4112) tgx = ; x = arctg + πn, n ∈ Z;33π1Ответ: {– + πn/n ∈ Z; arctg + πn/n ∈ Z}.431) tgx = –1; x = –б) tgx – 2ctgx + 1 = 0; tg2x + tgx – 2 = 0; tgx ≠ 0; tgx = t;90t2 + t – 2 = 0; t = –2, t = 1;1) tgx = –2, x = arctg(–2) + πn, n ∈ Z;2) tgx = 1, x =π+ πk, k ∈ Z.4Ответ: { arctg(–2) + πn/n ∈ Z;π+ πk/k ∈ Z}.4168.а) 2cos2x +3 = 0;3 cosx = 0; 2cosx cos x +2 cosx = 0 или cosx = –1) cosx = 0, x =3;2π+ πk, k ∈ Z;25π3,x=±+ 2πk, k ∈ Z;265ππ+ 2πk / k ∈ Z .Ответ: + πk / k ∈ Z ; ±622) cosx = –б) 4cos2x – 3 = 0; cos2x =cosx = –3;433либо cosx =;221) cosx = –35π,x=±+ 2πn, n ∈ Z;263π, x = ± + 2πk, k ∈ Z;26πОбщая запись: x = ± + πn, n ∈ Z.6 πОтвет: ± + πn / n ∈ Z . 62) cosx =в) 3 tg2x – 3tgx = 0; 3 tgx(tgx – 3 ) = 0; tgx = 0 либо tgx = 3 ;1) tgx = 0, x = πk, k ∈ Z;π+ πk, k ∈ Z;3πОтвет: {πk/k ∈ Z; + πk/k ∈ Z}.32) tgx = 3 , x =91111; sinx = – либо sinx = ;4221n+1 π+ πn, n ∈ Z;1) sinx = – , x = (–1)261π2) sinx = , x = (–1)n + πn, n ∈ Z;26πОбщая формула: x = ± + πn, n ∈ Z;6πОтвет: {± + πn/n ∈ Z}.6г) 4sin2x – 1 = 0; sin2x =169.а) 3sin2x + sinxcosx = 2cos2x; 3tg2x + tgx – 2 = 0; tgx = t;3t2 + t – 2 = 0; t = –1; t =2;3π+ πn, n ∈ Z;4222) t = , x = arctg + πn, n ∈ Z;332 πОтвет: − + πn / n ∈ Z ; arctg + πn / n ∈ Z .431) tgx = –1, x = –б) 2cos2x – 3sinxcosx + sin2x = 0;tg2x – 3tgx + 2 = 0; tgx = t;t2 – 3t + 2 = 0; t = 1, t = 2;1) tgx = 1, x =π+ πn, n ∈ Z;42) tgx = 2, x = arctg2 + πn, n ∈ Z;Ответ: {π+ πn/n ∈ Z; arctg2+ πn/n ∈ Z}.4в) 9sinxcosx – 7cos2x = 2sin2x;2tg2x – 9tgx + 7 = 0; tgx = t;2t2 – 9t + 7 = 0; t = 3,5; t = 1;1) tgx = 3,5, x = arctg7+ πn, n ∈ Z;2π+ πn, n ∈ Z;47πОтвет: arctg + πn / n ∈ Z ;+ πn / n ∈ Z .242) tgx = 1, x =92г) 2sin2x – sinxcosx = cos2x; 2tg2x – tgx – 1 = 0; tgx = t;2t2 – t – 1 = 0; t = 1, t = –1;2π+ πk, k ∈ Z;41 12) tgx = – , x = arctg − + πn, n ∈ Z;2 21) tgx = 1, x =π4 1 2Ответ: + πk / k ∈ Z ; arctg − + πn / n ∈ Z .170.а) 4sin2x – sin2x = 3;sin2x – 2sinxcosx – 3cos2x=0;tg2x – 2tgx – 3 = 0;1) tgx = –1, x = –π+ πn, n ∈ Z;42) tgx = –3, x = arctg3+ πk, k ∈ Z; π+ πn / n ∈ Z ; arctg3 + πk / k ∈ Z .4Ответ: −б) cos2x = 2cosx – 1; 1 + cos2x – 2cosx = 0;cosx(cosx – 1) = 0; cosx = 0 или cosx = 1;1) cosx = 0, x =π+ πk, k ∈ Z;22) cosx = 1, x = 2πn, n ∈ Z.π2Ответ: + πk / k ∈ Z ; 2πn / n ∈ Z .в) sin2x – cosx = 0; 2sinxcosx – cosx = 0;1) = 0;21cosx = 0 или sinx = ;2π1) cosx = 0, x = + πn, n ∈ Z;21π2) sinx = , x = (–1)k + πk, k ∈ Z.26πОтвет: + πn / n ∈ Z ; 2πn / n ∈ Z .22cosx(sinx –93г) sin2x – 4cos2x = 1; 2sinxcosx + 4cos2x – cos2x – sin2x = 0;tg2x –2tgx – 3 = 0;Аналогично пункту а).π π+ πn / n ∈ Z ; (-1)k + πk / k ∈ Z .6 4Ответ: −171.а) 2sin2x = 3 sin2x; 2sin2x – 2 3 sinxcosx = 0;2tgx(tgx – 3 ) = 0; tgx = 0 или tgx = 3 ;1) tgx = 0, x = πn, n ∈ Z;π+ πn, n ∈ Z;3πОтвет: {πn/n ∈ Z;+ πn/n ∈ Z}.32) tgx = 3 , x =3 tg2x – 2tgx – 3 = 0, tgx = t;1, t= 3;3 t2 – 2t – 3 = 0, t = –31π1) tgx = –, x = – + πk, k ∈ Z;63π2) tgx = 3 , x =+ πk, k ∈ Z;3ππ+ πk / k ∈ Z .Ответ: + πk / k ∈ Z ;36б)3 tgx – 3 ctgx = 2;в) sinx + 3 cosx = 0; tgx = – 3 ; x = –π+ πk, k ∈ Z;3 π+ πk / k ∈ Z . 3Ответ: −г) tgx = 3ctgx; tg2x = 3; tgx = – 3 либо tgx = 3 ;π+ πn, n ∈ Z;3 πОтвет: ± + πn / n ∈ Z .3x=±172.а) sin2x + 2cos2x = 1; 2sinxcosx + 2cos2x – 2sin2x = cos2x + sin2x;3tg2x – 2tgx – 1 = 0;9413131) tgx = – , x = arctg(– )+ πn, n ∈ Z;2) tgx = 1, x =π+ πk, k ∈ Z;4 1 3Ответ: arctg − + πn / n ∈ Z ;π+ πk / k ∈ Z .4xxx 1 б) sin4 – cos4 = ; sin 2 − cos 244 2 4x14πcos = – ; x = ±+ 4πk;2234πОтвет: {±+ 4πk/k ∈ Z}.3x 2 x+ cos 2 sin4 4x 1= ;4 2в) 3sin2x + cos2x = 2cos2x; sin2x – 6sinxcosx + cos2x = 0;tg2x – 6tgx + 1 = 0;tgx = 3 – 2 2 или tgx = 3 + 2 2 ;1) tgx = 3 – 2 2 , x = arctg(3 – 2 2 ) + πn, n ∈ Z;2) tgx = 3 + 2 2 , x = arctg(3 + 2 2 ) + πk, k ∈ Z;Ответ: {arctg(3 – 2 2 ) + πn/n ∈ Z; arctg(3 + 2 2 ) + πk/k ∈ Z}.xxx; 2sin (2sin – 1) = 0;222xxsin = 0 или sin = 1;22xx1) sin = 0, = πn, x = 2πn, n ∈ Z;22xx π2) sin = 1, = + 2πk, x = π + 4πk, k ∈ Z;22 2г) 1 – cosx = 2sinОтвет: {2πn/n ∈ Z; π + 4πk/k ∈ Z}.173.а) sin4x + sin22x = 0; 2sin2xcos2x + sin22x = 0;tg2x(2 + tg2x) = 0; tg2x = 0 либо tg2x = –2;1) tg2x = 0; x =πn, n ∈ Z;21πarctg2 + k, k ∈ Z;221ππОтвет: n / n ∈ Z ; − arctg2 + k / k ∈ Z .2222) tg2x = –2, 2x = arctg(–2) + πk, x = –95б)388= 1 ; 5tgx + 8 = 3, tg x ≠ – ; tgx = –1, tgx ≠ – ;5tgx + 855tgx = –1, x = –Ответ: {–π+ πn, n ∈ Z;4π+ πn/n ∈ Z}.451π= 2 ; 6sinx + 8 = 5; sinx = – , x = (–1)k+1 + πk, k ∈ Z;263 sin x + 4k+1 πОтвет: {(–1)+ πk/k ∈ Z}.6в)x2x22г) 1 – sin2x = cos − sin ; 1 – sin2x = 1 – sinx ;112sinx( – cosx) = 0; sinx = 0 или cosx = ;221) sinx = 0, x = πk, k ∈ Z;1π, x = ± + 2πk, k ∈ Z;23πОтвет: {πk/k ∈ Z; ± + 2πk/k ∈ Z}.32) cosx =174.а) cos5x – cos3x = 0; –sinxsin4x = 0; sinx = 0 либо sin4x = 0;1) sinx = 0, x = πn, n ∈ Z;2) sin4x = 0, 4x = πk, x =Ответ: {πk, k ∈ Z;4πk/k ∈ Z}.4б) sin7x – sinx = cos4x; 2cos4x(sin3x –cos4x = 0 либо sin3x =1) = 0;21;2π π+ k, k ∈ Z;8 4π π12) sin3x = , x = (–1)k + k, k ∈ Z;218 3π ππ πОтвет: + k / k ∈ Z ; (−1) k + k / k ∈ Z .18 38 41) cos4x = 0, x =96в)sin5x – sinx = 0; 2sin2xcos3x = 0; sin2x = 0 либо cos3x = 0;πk, k ∈ Z;2ππ π2) cos3x = 0, 3x = + πk, x = + k, k ∈ Z;26 3πππОтвет: k / k ∈ Z ;+ k / k ∈ Z.6 321) sin2x = 0, 2x = πn, x =г) cos3x + cosx = 4cos2x; 2cos2x(cosx – 2) = 0; cos2x = 0;2x =175.ππ ππ π+ πk, x = + k, k ∈ Z; Ответ: + k / k ∈ Z .24 24 2 x + y = π, x = π − y,а) cos x − cos y = 1; cos x − cos(π − x ) = 1;cosx – cos(π – x) = 1; 2cosx = 1; cosx =π y = π + 3 − 2πn = y = π − π − 2πn =31π; x = ± + 2πn, n ∈ Z;234π− 2πn, n ∈ Z ;32π− 2πn, n ∈ Z ;3 π4π2π π+ 2πn;− 2πn ; + 2πn;− 2πn / n ∈ Z .3333Ответ: −πx − y = ,б) 2cos 2 x + sin 2 y = 2;сos2(πx = + y,2πcos 2 + y + sin 2 y = 2;2π+y) + sin2y = 2; 2sin2y = 2; sin2y = 1;2siny = –1 либо siny = 1;ππ+ 2πn, n ∈ Z либо y = + 2πk, k ∈ Z;22πππесли y = – + 2πn, n ∈ Z, то x = – + 2πn + = 2πn, n ∈ Z;222πππесли y = + 2πk, k ∈ Z, то x = + 2πk + = π + 2πk, k ∈ Z;222ππОтвет: {(2πn; – + 2πn); (π + 2πk; + 2πk)/n,k ∈ Z}.22y=–97 x + y = π, y = π − x,в) sin x + sin y = 1; sin x + sin( π − x ) = 1;sinx + sin(π – x) = 1; 2sinx = 1; sinx =1;2π+ πn, n ∈ Z;6ππy = π – (–1)n + πn = (–1)n+1 – π(n – 1), n ∈ Z;, n ∈ Z;66n πn+1 πОтвет: {(–1) + πn; (–1)– π(n – 1)/n ∈ Z}.66ππ y = 2 − x,x + y = ,г) 2πsin 2 x − sin 2 y = 2; sin 2 x − sin 2 − x = 1;2x = (–1)nπ– x) = 1; sin2x – cos2x = 1; –cos2x =1;2ππ π2x = π + 2πn; x = + πn, n ∈ Z; y = – – πn = –πn, n ∈ Z; n ∈ Z;22 2πОтвет: { + πn; –πn/n ∈ Z}.2sin2x – sin2(176.sin x − cos y = 0,sin x = cos y 2222+=xysinsin2;sin x + sin x = 2;π2sin2x = 2; sin2x = 1; sinx = 1, x = + 2πn, n ∈ Z,2πлибо sinx = –1, x = – + 2πk, k ∈ Z,2а) если sinx = 1, то cosy = 1, y = 2πk, k ∈ Z;если sinx = –1, то cosy = –1, x = π + 2πn, n ∈ Z;ππ+ 2πn; 2πk); (– + 2πk; π + 2πn)/n,k ∈ Z}.22ππx + y = , y = − x,44б) 1 π 1tgxtgy = ; tgxtg − x = ;6 4 6Ответ: {(98π1tgx tg( – x) = ; tgx46π− tgx14= ;π61 − tg tgx4tg6tg2x – 5tgx + 1 = 0; tgx = t; 6t2 – 5t + 1 = 0; t =11или t = ;3211π1– arctg – πn, n ∈ Z;334311π12) t = , arctg + πk, k ∈ Z и y = – arctg – πk, k ∈ Z;22421π1Ответ: arctg + πn, − arctg − πn ;3431) t = , arctg + πn, n ∈ Z и y =11π arctg + πk , − arctg − πk / n, k ∈ Z .242sin x + cos y = 1, sin x + cos y = 1,в) 22sin x − cos y = 1; (sin x + cos y )(sin x − cos y ) = 1;sin x + cos y = 1,sin x − cos y = 1;π+ 2πk, k ∈ Z;2π2cosy = 0, cosy = 0, y = + πn, n ∈ Z;2 ππОтвет: + 2πk ; + πn; / n, k ∈ Z .2 2ππ x − y = 6 ,x = y + ,г) 6sin x cos y = 1 ; 2 sin x cos y = 1;2πππ2sin(y + )cosy = 1; 2(sinycos + cosysin )cosy = 1;6661222или siny = 0;3 sinycosy + cos y = cos y + sin y; ctgy =3πy = + π k, k ∈ Z либо y = πn, n ∈ Z;3π πππx = + +πk = +πk, k ∈ Z или x = +πn, n ∈ Z.6 326 ππ πОтвет: + πk ; + πk ; ; + πn; πn; / n, k ∈ Z .3 6 22sinx = 2, sinx = 1, x =99ГЛАВА II.
ПРОИЗВОДНАЯ И ЕЕ ПРИМЕНЕНИЯ§ 4. ПРОИЗВОДНАЯ12. Приращение функции177.а) Если a = 15 м – длина меньшей из сторон прямоугольника,b = 20 м – длина большей из сторон прямоугольника, тогда имеем:1) ∆P = 2((a + ∆a) + b) – 2(a + b) = 2∆a = 2⋅0,11 = 0,22 м,∆S = (a + ∆a)b – ab = ∆a⋅b = 0,11⋅20 = 2,2 м2;2) ∆P = 2(a + (b + ∆b)) – 2(a + b) = 2∆b = 2⋅0,2 = 0,4 м,∆S = a(b + ∆b) – ab = a∆b = 15⋅0,2 = 3 м2;б) ∆S = π(2 + 0,2)2 – π⋅22 = 0,84π см2 ≈ 2,6 см2,∆S = π(2 + ∆R)2 – π⋅22 = (4∆R + (∆R)2)π = 4π∆R + π (∆R)2;∆S = π(2 + 0,1)2 – π⋅22 = 0,41π см2 ≈ 1,29 см2,∆S = π(2 + h)2 – π⋅22 = 2πh + πh2;178.а) f(x0 + ∆x) – f(x0) =1;19б) f(x0 + ∆x) – f(x0) = –2,32;в) f(x0 + ∆x) – f(x0) = 0,03;г) f(x0 + ∆x) – f(x0) = 0,205.179.а) ∆x = x – x0 =3π 2π π;−=43 1222π 1 2π π + − cos= ;34 3 12 f(x0 + ∆x) – f(x0) = ∆f(x0) = cos2 б) ∆x = x – x0 = 2,6 – 2,5 = 0,1;2f(x0 + ∆x) – f(x0) = ∆f(x0) = – ;5в) ∆x = x – x0 =π π π− =;3 4 12f(x0 + ∆x) – f(x0) = ∆f(x0) = tgππ− tg = 3 − 1 ;3411г) ∆x = x – x0 = ; f(x0 + ∆x) – f(x0) = ∆f(x0) = .810180.а) ∆f = f(x0 + ∆x) – f(x0) – 1 – 3(x0 + ∆x)2 – 1 + 3x02 = –6x0⋅∆x – 3(∆x)2;б) f(x0 + ∆x) – f(x0) = a(x0 + ∆x) + b – ax0 – b = a∆x;100в) f(x0 + ∆x) – f(x0) = 2(x0 + ∆x)2 – ax02 = 4x0⋅∆x + 2(∆x)2;г) f(x0 + ∆x) – f(x0) =∆x.x0 ( x0 + ∆x )181.Средняя скорость равна:S (3) − S (0)S (5) − S (3)кмкм= 50= 65;б) Vср =;∆t∆tччS (5,25) − S (3,25)S (8) − S (0)кмкм= 65= 57,5в) Vср =; г) Vср =;∆t∆tчча) Vср =182.а) ∆x = x(2,5) – x(2) = 3,75 – перемещение в положительномнаправлении оси OX;Средняя скорость Vср =∆x3,75== 7,5 ;∆t 2,5 − 2б) ∆x = x(8) – x(7) = –3 – перемещение в отрицательномнаправлении оси OX;Средняя скорость Vср =∆x= −3 ;∆tв) ∆x = x(5) – x(4) = 3 + 12⋅5 – 52 – 3 – 12⋅4 + 42 = 3 – перемещениев положительном направлении оси OX;Средняя скорость Vср =∆x=3;∆tг) ∆x = x(8) – x(6) = 3 + 12⋅8 – 82 – 3 – 12⋅6 + 62 = –4 – перемещениев отрицательном направлении оси OX;Средняя скорость Vср =∆x= −2 .∆t183.а) tgα =y − y0,x − x0y = y0 + tgα(x – x0);Тогда т.(x0,y0) и т.(x,y,) задают единственную прямую.y = 3 + tgα(x – 1);tgα = –1, x = 0: y = 3 + 1 = 4;tgα = 2, x = 0: y = 3 – 2 = 1;101б) tgα =y=3+1, x = 3:21(3 – 1) = 3 + 1 = 4;2tgα = –3, x = 0: y = 3 + 3 = 6;в) tgα = 3, x = 0: y = 3 – 3 = 0;tgα = –2, x = 0: y = 3 + 2 = 5;102г) tgα = –1, x = 3: y = 3 – 1 = 2;2tgα = –2, x = 0: y = 3 + 2 = 5;184.а) k = tgα =y2 − y1f ( x2 ) − f ( x1 ) 1== > 0 – острый угол;x2 − x1x2 − x12б) k =f ( x2 ) − f ( x1 )3= − < 0 – тупой угол;x2 − x12в) k =f ( x2 ) − f ( x1 ) 3= > 0 – острый угол;x2 − x12г) k =f ( x2 ) − f ( x1 )1= − < 0 – тупой угол;x2 − x12185.∆S(x) = S(x + ∆x) – S(x) = 12x⋅∆x + 6(∆x)2 = 6∆x(2x + ∆x).186.а) ∆f = f(x0 + ∆x) – f(x0) == –x03 – 3x02⋅∆x – 3x0(∆x)2 – (∆x)3 + 3x0 + 3∆x + x03 – 3x0 == –3x02⋅∆x – 3x0(∆x)2 – (∆x)3 + 3∆x;∆f= 3(1 – x02) – 3x0∆x – (∆x)2;∆x1б) f(x0 + ∆x) – f(x0) ==2( x0 + ∆x ) − 1− 2 x0∆x − (∆x ) 2(( x0 + ∆x) 2 − 1)( x02 − 1)−1x02−1=;2 x0∆x + (∆x ) 2∆f=−;∆x(( x0 + ∆x )2 − 1)( x02 − 1)103в) f(x0 + ∆x) – f(x0) = 3x02⋅∆x + 3x0(∆x)2 + (∆x)3 – 2∆x == ∆x(3x02 – 2) + 3x0(∆x)2 + (∆x)3;∆f= 3x02 – 2 + 3x0∆x + (∆x)2;∆xг) f(x0 + ∆x) – f(x0) ==x02 + 1 − ( x0 + ∆x ) 2 − 1(( x0 + ∆x)2+ 1)( x02+ 1)=2 x0∆x + (∆x) 2(( x0 + ∆x) 2 + 1)( x02 + 1);2 x0 + ∆x∆f=−.∆x(( x0 + ∆x ) 2 + 1)( x02 + 1)187.а) x(t0 + ∆t) – x(t0) = V0(t0 + ∆t) –gg(t0 + ∆t)2 – V0t0 + t02 =22g(∆t)2;2x(t + ∆t ) − x (t 0 )g= V0 − gt 0 − ∆t ;Имеем: Vср = 0∆t2= V0∆t – gt0∆t –б) x(t0 + ∆t) – x(t0) = –a(t0 + ∆t) + b –at0 – b = –a∆t;a∆t= −a ;∆tgggв) x(t0 + ∆t) – x(t0) = (t0 + ∆t)2 – t02 = gt0∆t + (∆t)2;222ggt0∆t + (∆t ) 2g2= gt0 + ∆t ;Имеем: Vср =∆t2Имеем: Vср = –г) x(t0 + ∆t) – x(t0) = a(t0 + ∆t) – b –at0 + b = a∆t;Имеем: Vср =a∆t=a.∆t13.