ЛК20 (1172693), страница 2
Текст из файла (страница 2)
– обобщенные силы сопротивления, соответствующие всем активным силам, кроме движущих.
Кинетическая энергия каждого звена в общем случае определяется как кинетическая энергия твердого тела, совершающего сложное пространственное движение:
где i – номер звена, mi – его масса, vci – скорость центра масс, JiС – тензор инерции в системе осей, начало которой находится в центре масс i-го звена, – трехмерный вектор-столбец абсолютной угловой скорости. Учитывая, что
где Jix, Jiy, Jiz – осевые моменты инерции i-го звена, Jixy, Jixz, Jiyz – центробежные моменты инерции, а
где – проекции вектора угловой скорости i-го звена
на оси i-й системы координат, выражение (6.20) можно записать в виде:
В качестве примера рассмотрим схему трехподвижного механизма (рис.6.3). Звено 1 вращается вокруг своей продольной оси с угловой скоростью
. По звену 1 со скоростью
движется звено 2. Звено 3, связанное со звеном 2 шарниром В, вращается относительно звена 2 с угловой скоростью
. На звене 3 имеется схват, в точке М которого приложена активная сила
. Центры масс второго и третьего звеньев находятся в точках С2 и С3 соответственно.
Кинетическую энергию механизма определим как сумму кинетических энергий его подвижных звеньев. Для вращающегося звена 1 имеем где
– момент инерции звена 1 относительно оси z1, совпадающей с осью его вращения.
Звено 2 вращается вместе со звеном 1 и перемещается по нему, его кинетическая энергия равна:
где vC2 – скорость центра масс второго звена, m2 – его масса, J2 – тензор инерции, построенный в осях С2x2y2z2 (рис.6.4, а), – вектор-столбец угловой скорости.
Подставим найденные значения в выражение для кинетической энергии Т2:
где . Кинетическая энергия третьего звена Т3:
Найдем скорость центра масс третьего звена vC3.
Положим, что звено 3 представляет собой тонкий однородный стержень, а . Тогда компоненты тензора инерции J3, построенного в осях С3x3y3z3 (рис. 6.4, б): J3x = 0; J3y = J3z =
; J3xy = J3xz = J3yz = 0. Угловая скорость
:
Отсюда получим:
Полная кинетическая энергия механизма составит:
Найдем обобщенные силы сопротивления. Из выражения (6.19) следует:
Здесь учтено, что центр масс звена 1 не изменяет своего положения. Из кинематического анализа несложно получить выражения для и
:
,
,
,
,
,
.
Функция положения точки М:
Отсюда
Теперь несложно найти обобщенные силы сопротивления:
Подставляя найденные значения в уравнения Лагранжа, получим три уравнения движения:
Из приведенных уравнений видно взаимовлияние приводов. Например, двигатель 2 «чувствует», как работает двигатель, приводящий в движение звено 3 (движущий момент Q2 зависит от и от
).
173