Главная » Просмотр файлов » Лекции ТММ 1

Лекции ТММ 1 (1172676), страница 11

Файл №1172676 Лекции ТММ 1 (Лекции Тарабарин) 11 страницаЛекции ТММ 1 (1172676) страница 112020-05-12СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 11)

Sk y x 0

lk1

Постановка задачи:

Дано: lAB, lBC, lAS1, lBS2,

lCS3=0, m1, m2, m3

_____________________

Определить: mk1

Рис. 5.6

В этом случае необходимо добиться, чтобы центр масс механизма при движении перемещался по дуге окружности радиуса rSм** (рис.5.6). Расчет корректирующей массы ведется в два этапа. В начале первой составляющей корректирующей массы mk1* уравновешивается масса mB . Составляется, как и в предыдущем примере, уравнение статических моментов относительно точки А : m k1* lk1 = mВ lАВ . Задается величина lk1 и рассчитывается корректирующая масса m k1* = mВ lАВ / lk1= (mВ2 + mB1) lАВ / lk1 . Затем с помощью второй составляющей корректирующей массы mk1**центр массы mС. перемещается в точку Sм**. Величина mk1** определяется следующим образом: центр шарнира С соединяется прямой с концом отрезка lk1 точкой Sk . Радиус rSм** проводится параллельно отрезку BС. Тогда

SkВС SkА Sм** и x/y =. lk1 / lAB .

Статический момент относительно точки Sм **:

mk1** x = mC y, mk1** = mC y/x = mC lAB / lk1 .

Радиус-вектор rSм** определяется из подобия треугольников из пропорций

x/ rSм** = ( x + y )/ lBC , x/( x + y ) = lk1 / ( lk1 + lAB ),

откуда

rSм ** = [ lk1 / ( lk1 + lAB )] lBC = const.

Корректирующая масса, обеспечивающая уравновешивание горизонтальной составляющей главного вектора сил инерции кривошипо-ползунного механизма, размещается на первом звене механизма и равна сумме составляющих

mk1 = mk1* + mk1** = ( m2 + m3 + mB1 ) lАВ / lk1 .

Центр массы механизма при таком уравновешивании расположен в точке Sм, которая движется по дуге радиуса rSм

rSм = ( mС2 + m3 + mk1**) rSм ** /( m1 + m2 + m3 + mk1 ).

(m1 + mC2 + mk1*)

A

Sм (m3 + mC2 +mk1**)


rSм

rSм** Sм**

Рис. 5.7

Схема распределения масс в механизме после уравновешивания дана на рис. 5.7.

Балансировка роторов.

  1. Общие сведения о балансировке. Ротор, неуравновешенность ротора и ее виды. Задачи балансировки. Ротором ( по гост 19534-74 ) называют звенья механизмов, совершающие вращательное движение и удерживаемые при этом своими несущими поверхностями в опорах. Если масса ротора распределена относительно оси вращения равномерно, то главная центральная ось инерции x-x совпадает с осью вращения и ротор является уравновешенным или идеальным. При несовпадении оси вращения с осью x-x, ротор будет неуравновешенным и в его опорах при вращении возникнут переменные реакции, вызванные действием инерционных сил и моментов ( точнее, движением центра масс с ускорением ).

В зависимости от взаимного расположения оси вращения и главной цетральной оси инерции x-x , по ГОСТ 19534-74, различают следующие виды неуравновешенности роторов (рис. 5.8): а - статическую, когда эти оси параллельны; б - моментную, когда оси пересекаются в центре масс ротора S ; в - динамическую, когда оси либо пересекаются вне центра масс, либо не пересекаются, а перекрещиваются в пространстве.

а) e б) в) e

x x

Ми


x S x S S

x x

Fи Fи

Рис. 5.8

Как отмечено выше, неуравновешенность определяется конструктивными характеристиками ротора или механизма и не зависит от параметров движения. Поэтому при балансировке оперируют не инерционными силами, а дисбалансами. Дисбаланс - мера статической неуравновешенности ротора, векторная величина, равная произведению неуравновешенной массы m на ее эксцентриситет e, где эксцентриситет e - радиус-вектор центра этой массы относительно оси ротора. Направление главного вектора дисбаланса D совпадает с направлением главного вектора сил инерции Fи, действующих на ротор при вращении:

Fи = m e2 = D 2.

Моментная неуравновешенность характеризуется главным моментом дисбалансов ротора MD , который пропорционален главному моменту сил инерции (рис. 5.9):

Mи = DМ l 2 = MD 2.

Главный момент дисбалансов ротора полностью определяется моментом пары равных по величине и противоположных по направлению дисбалансов DM1 + DM2 = DM, расположенных в двух произвольных плоскостях ( I и II ), перпендикулярных оси вращения ротора. Дисбаланс и момент дисбалансов не зависят от частоты вращения, они полностью определяются конструкцией ротора и точностью его изготовления. Балансировкой называют процесс определения значений и угловых координат дисбалансов ротора и их уменьшения с помощью корректировки размещения его масс. Балансировка эквивалентна уравновешиванию системы инерционных сил, прикладываемых к подвижному ротору для его равновесия.

D z

D2 x

MD S

Dc1 Dc2

D1 ek1 0 y DM2


DM1 mk1 e II

x x Dk1 ek2

l

I mk2

Dk2

Рис. 5.9

Эту систему, как и любую произвольную систему сил, можно заменить равнодействующими - главным вектором и главным моментом или двумя векторами, расположенными в произвольных параллельных плоскостях. Для уравновешивания системы сил достаточно уравновесить эти равнодействующие. При балансировке операции над силами заменяют действиями над дисбалансами. Поэтому для жестких роторов выщесказанное можно сформулировать так: жесткий ротор можно уравновесить двумя корректирующими массами, расположенными в двух произвольно выбранных плоскостях, перпендикулярных оси его вращения. Эти плоскости называют плоскостями коррекции.

Задача балансировки ротора заключается в определении, в выбранных плоскостях коррекции , значений и углов дисбалансов и размещении в этих плоскостях корректирующих масс, дисбалансы которых равны по величине и противоположны по направлению найденным дисбалансам ротора. На практике балансировку проводят : при конструировании - расчетными методами, в процессе изготовления деталей и узлов - экспериментально на специальных балансировочных станках. Балансировка на станках является более точным и надежным методом, по сравнению с расчетными. Поэтому она применяется для ответственных деталей с высокими рабочими частотами вращения. Корректировка масс ротора осуществляется либо присоединением к нему дополнительных корректирующих масс (наплавлением, наваркой или привинчиванием противовесов), либо удалением части массы ротора с «тяжелой» стороны (фрезерованием или высверливанием). Точность балансировки характеризуется величиной остаточного дисбаланса D0 ротора в каждой из плоскостей коррекции. Величина D0 не должна превышать допустимых для данного класса точности значений, регламентируемых ГОСТ 22061-76.

  1. Балансировка роторов при различных видах неуравновешенности.

  1. Статическая неуравновешенность.

Dk


e mk

ek


x S x

Dc m

Рис. 5.10


При статической неуравновешенности (рис.5.10) главная центральная ось инерции параллельны оси вращения ротора , главный вектор дисбалансов больше нуля , а главный момент дисбалансов равен нулю

Dс 0 ; MD = 0,

т.е. необходимо уравновесить только вектор Dс = m e. Для этого достаточно установить на роторе только одну корректирующую массу mk величине которой определяется из равенства Dk = mk ek = -Dc mk = Dk / ek , где величиной ek задаются из соображений удобства размещения противовесов. Направление вектора Dk противоположно направлению Dc .

n

Условие статической уравновешенности ротора: Di = 0

i=1

2.2. Моментная неуравновешенность.

Dk MDk

m

mk

ek x

МD


S

x ek

lk lk mk

l Dk


Рис. 5.11


При моментной неуравновешенности (рис.5.11) главная центральная ось инерции пересекает ось вращения в центре масс ротора точке S, главный вектор дисбалансов Dс равен нулю, гавный момент дисбалансов МD не равен нулю

Dс = 0, МD 0,

т.е. необходимо уравновесить только момент дисбалансов МD . Для этого достаточно разместить на роторе две одинаковых корректирующих массы mk на равных расстояниях от оси вращения ek и от ценра масс S - lk. Массы выбираются и размещаются так, чтобы момент их дисбалансов MDk был по величине равен, а по направлению противоположен моменту дисбалансов ротора МD:

MDk = - МD , MDk = Dk lk + Dk lk = MDk1 + MDk2,

где Dk = mk ek .

В этих зависимостях величинами lk и ek задаются по условиям удобства размещения противовесов на роторе, а величину mk рассчитывают. Необходимо отметить, что величины Dk в плоскостях коррекции необязательно должны быть равными, необходимо выполнять только неизменность положения центра масс - он должен оставаться на оси вращения.

Характеристики

Тип файла
Документ
Размер
4,51 Mb
Тип материала
Высшее учебное заведение

Список файлов лекций

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6367
Авторов
на СтудИзбе
310
Средний доход
с одного платного файла
Обучение Подробнее