Диссертация (1150529), страница 5
Текст из файла (страница 5)
Ñëåäîâàòåëüíî,ñòðàòåãèÿ S(s) ïî (1.7) ÿâëÿåòñÿ îïòèìàëüíîé äëÿ ïðîäàâöîâ.Àíàëîãè÷íûå ðàññóæäåíèÿ ïðîâåäåì äëÿ ïîêóïàòåëåé. Âûèãðûø ïîêóïàòåëÿ b êàê ôóíêöèÿ ïðåäëàãàåìîé öåíû y ∈ [a, b] âû÷èñëÿåòñÿ ïî ôîðìóëå (1.10),à åå ïðîèçâîäíàÿ ñîãëàñíî (1.11). Ïðè a < y < c, ó÷èòûâàÿ (1.13), ïîëó÷èì∂Hb (b, y) (b − y)f (V (y))F (V (y)) F (V (y)) F (V (y))(b − U (y))=−=,∂y2(U (y) − y)f (V (y))22(U (y) − y)(1.15)îòêóäà âèäíî, ÷òî íàèáîëüøåå çíà÷åíèå Hb (b, y) íà [a, c] äîñòèãàåòñÿ ïðè y =U −1 (b) = B(b) äëÿ b ∈ [a, β] è ïðè y = c äëÿ b ∈ [β, 1].Èç (1.10) íåòðóäíî âûâåñòè, ÷òî ïðè y ≥ cH2 (b, y) = H2 (1, y) − (1 − b)F (y),îòêóäà, ó÷èòûâàÿ ìîíîòîííîå âîçðàñòàíèå F (y) è óñëîâèå (b), ñëåäóåò, ÷òîH2 (b, y) ïðèíèìàåò íà [c, b] íàèáîëüøåå çíà÷åíèå ïðè y = c.
Ñëåäîâàòåëüíî,ñòðàòåãèÿ B(b) ïî (1.7) ÿâëÿåòñÿ îïòèìàëüíîé äëÿ ïîêóïàòåëåé. Ëåììà äîêàçàíà.Ëåììà 1.3. Ïóñòü âûïîëíåíû âñå óñëîâèÿ ëåììû 1.2 êðîìå (a) è (b), ïðîèç-âîäíûå V ′ (a), U ′ (c) ñóùåñòâóþò, êîíå÷íûå è ïîëîæèòåëüíûå,F (x) ∼ h1 xα ,f (x) ∼ αh1 xα−1 , ïðè x → 0,(1.16)231 − G(x) ∼ h2 (1 − x)γ ,g(x) ∼ γh2 (1 − x)γ−1 , ïðè x → 1,(1.17)ãäå h1 , h2 , α, γ ∈ (0, +∞).
Òîãäà ñòðàòåãèè (1.7) ðåàëèçóþò ëîêàëüíûé ìàêñèìóì èíäèâèäóàëüíîãî âûèãðûøà äëÿ ëþáîãî ïîêóïàòåëÿ è ïðîäàâöà. Ïðè ýòîìσ = 0, β = 1, ìàðãèíàëüíûå öåíû a è c óäîâëåòâîðÿþò òîæäåñòâàì(1 − G(a) =(F (c) =)1ag(a),2+α12+γ(1.18))(1 − c)f (c).(1.19)Äîêàçàòåëüñòâî.Ïåðåõîäÿ ê ïðåäåëó â (1.12), (1.13), íàõîäèì âûðàæåíèÿ äëÿ ïðîèçâîäíûõU ′ (a) = lim U ′ (t) =1 − G(a),2g(a)(a − σ)(1.20)V ′ (c) = lim V ′ (t) =F (c).2(β − c)f (c)(1.21)t→a+t→c−Çàìåòèì, ÷òî ïðè σ > 0 áóäåò V ′ (a) = +∞, è ïðè β < 1 áóäåò U ′ (c) = +∞.Ñëåäîâàòåëüíî, σ = 0, β = 1. Íåòðóäíî ïîíÿòü, ÷òî ïðè t → c âûïîëíÿþòñÿU (t) − 1 = U (t) − U (c) ∼ U ′ (c)(t − c),V (t) − t = V (t) − V (c) − (t − c) ∼ (V ′ (c) − 1)(t − c),îòñþäà, ó÷èòûâàÿ (1.12), (1.17), ïðè t → c èìååìU ′ (c) ∼ U ′ (t) ∼h2 (1 − U (t))γ=2(t − V (t))γh2 (1 − U (t))γ−1(1 − U (t))U ′ (c)(t − c)U ′ (c)=∼=,2γ(t − V (t)) 2γ(V ′ (c) − 1)(t − c) 2γ(V ′ (c) − 1)îòêóäà ïîëó÷àåì, ÷òî 2γ(V ′ (c) − 1) = 1, è, ñëåäîâàòåëüíî,V ′ (c) = 1 +1.2γÈç (1.21) è (1.22) î÷åâèäíî ñëåäóåò âûðàæåíèå (1.19).(1.22)24Ëåãêî ïîíÿòü, ÷òî ïðè t → a èìåþò ìåñòîV (t) = V (t) − V (a) ∼ V ′ (a)(t − a),U (t) − t = U (t) − U (a) − (t − a) ∼ (U ′ (a) − 1)(t − a),îòñþäà, ó÷èòûâàÿ (1.13) è (1.16), ïðè t → a ïîëó÷àåì, ÷òîh1 (V (t))αV (a) ∼ V (t) ∼=2(U (t) − t)αh1 (V (t))α−1V ′ (a)(t − a)V ′ (a)V (t)∼=,=2α(U (t) − t) 2α(U ′ (a) − 1)(t − a) 2α(U ′ (a) − 1)′′îòêóäà ñëåäóåò, ÷òî 2α(U ′ (a) − 1) = 1, è, òàêèì îáðàçîì, ñïðàâåäëèâîU ′ (a) = 1 +1.2α(1.23)Ïðèðàâíèâàÿ (1.20) è (1.23), ïîëó÷àåì ñïðàâåäëèâîñòü ôîðìóëû (1.18).Èç âûðàæåíèÿ (2.11) äëÿ ïðîèçâîäíîé H1′ (s, x) ïðè c > x > a ñëåäóåò, ÷òîäëÿ ïðîäàâöîâ s > 0 èõ ëè÷íûé âûèãðûø H1 (s, x) èìååò ëîêàëüíûé ìàêñèìóìïðè x = V −1 (s), à äëÿ ïðîäàâöà s = 0 âûèãðûø H1 (0, x) óáûâàåò íà [a, c].Ïðè x < a èìååì U (x) = x, ïîýòîìó ïðîèçâîäíàÿ âûèãðûøà (1.9) â ýòîìñëó÷àå ðàâíà∂H1 (s, x) 1 − G(x)=− (x − s)g(x).(1.24)∂x2Ïîêàæåì, ÷òî âûèãðûø ïðîäàâöà s = 0 äîñòèãàåò ëîêàëüíîãî ìàêñèìóìà âòî÷êå a, ïðèìåíÿÿ (1.24) è (1.18).∂H1 (0, x = a) 1 − G(a)=− ag(a) =∂x2()1ag(a)1+ag(a) − ag(a) => 0,2α2αò.î.
äîêàçàíî, ÷òî ñòðàòåãèè (1.7) îïðåäåëÿþò ëîêàëüíûé ìàêñèìóì ëè÷íûõ âûèãðûøåé ïðîäàâöîâ. Äëÿ ïîêóïàòåëåé ðàññóæäåíèÿ àíàëîãè÷íûå. Ëåììà äîêàçàíà.Íàéäåì óñëîâèÿ ðàâíîñèëüíûå (a) è (b) â ëåììå 1.2. Äëÿ ýòîãî ðàññìîòðèì îæèäàåìûé âûèãðûø ïðîäàâöà ñ ðåçåðâíîé öåíîé s = 0 êàê ôóíêöèþ îò25ïðåäëàãàåìîé öåíû x ∈ [0, a]∫12H1 (0, x) =∫a(B(y) + x)dG(y) =x∫β(y + x)dG(y) +x(U −1 (y) + x)dG(y)+a∫1∫x(c + x)dG(y) = x(1 − G(x)) −+ydG(y) + const.0βÀíàëîãè÷íî äëÿ ïîêóïàòåëÿ ñ ðåçåðâíîé öåíîé b = 1 ïðè x ∈ [c, 1]∫12H2 (1, x) = (2 − x)F (x) +ydF (y) + const.xÐèñ.
1.1. Ðàâíîâåñíûå ïðîôèëè ñòðàòåãèé.Ðèñ. 1.2. Îáëàñòü ñäåëêè (ïî òåîðåìå 1.1).Òåïåðü èç ëåìì 1.1-1.2 ñëåäóåò îñíîâíîé ðåçóëüòàò: íåîáõîäèìûå è äîñòàòî÷íûå óñëîâèÿ ðàâíîâåñèÿ â êëàññå äèôôåðåíöèðóåìûõ ñòðàòåãèé.Òåîðåìà 1.1. Ïóñòü ôóíêöèè ðàñïðåäåëåíèÿ F (x) è G(x) èìåþò ïëîòíîñòèf (x) è g(x), íåïðåðûâíûå è ïîëîæèòåëüíûå íà (0, 1). Ìàðãèíàëüíûå öåíû 0 <26a < c < 1 óäîâëåòâîðÿþò óñëîâèÿì îïòèìàëüíîñòè â êðàéíèõ òî÷êàõ∫x{arg max x(1 − G(x)) −}ydG(y) = a,x∈[0,a]0∫1{arg max (2 − x)F (x) +}ydF (y) = c.x∈[c,1]xÔóíêöèè U (t), V (t) íåïðåðûâíûå íà [a, c], äèôôåðåíöèðóåìûå íà (a, c),ïðèíèìàþùèå çíà÷åíèÿ t < U (t) < 1, 0 < V (t) < t íà (a, c), ÿâëÿþòñÿ ðåøåíèåì êðàåâîé çàäà÷èU ′ (t) =1 − G(U (t)),2(t − V (t))g(U (t))a < t < c,V ′ (t) =F (V (t)),2(U (t) − t)f (V (t))a < t < c,U (a) = a, V (c) = c,ïðè÷åì σ = V (a) < a, β = U (c) > c.Òîãäà äèôôåðåíöèðóåìûå íà [0, c] è [a, 1] ïðîôèëè ñòðàòåãèé ïðîäàâöîâ èïîêóïàòåëåé0 ≤ s ≤ σ, a,S(s) =V −1 (s), σ ≤ s ≤ c,s,c ≤ s ≤ 1,0 ≤ b ≤ a, b,B(b) =U −1 (b), a ≤ b ≤ β,c,β ≤ b ≤ 1,îáðàçóþò áàéåñîâñêîå ðàâíîâåñèå â ìîäåëè îäíîøàãîâîãî äâóõñòîðîííåãî äâîéíîãî çàêðûòîãî àóêöèîíà ñ ðàñïðåäåëåíèÿìè F (x) è G(x) ðåçåðâíûõ öåí.Äëÿ íàõîæäåíèÿ ðàâíîâåñèÿ ñíà÷àëà ôèêñèðóåì êðàéíèå çíà÷åíèÿ äëÿ öåía, c, òàê ÷òîáû âûïîëíÿëèñü óñëîâèÿ îïòèìàëüíîñòè â êðàéíèõ òî÷êàõ òåîðåìû 1.1.
Çàòåì ðåøàåì êðàåâóþ çàäà÷ó äëÿ ôóíêöèé U , V â ãðàíèöàõ öåía, c. Íàõîäèì îáðàòíûå ôóíêöèè U −1 , V −1 è ñòðîèì íåïðåðûâíûå îïòèìàëüíûåñòðàòåãèè S(s), B(b) ó÷àñòíèêîâ.Íà ðèñ. 1.1 ïðèâåäåí âèä îïòèìàëüíûõ ñòðàòåãèé B(b) è S(s), à íà ðèñ. 1.2ïðåäñòàâëåíà îáëàñòü ñäåëêè ñ êðèâîëèíåéíîé ãðàíèöåé â äàííîì ñëó÷àå.27Îñîáîå ìåñòî ñðåäè âñåõ íåïðåðûâíûõ ðàâíîâåñèé çàíèìàþò òàêèå, ÷òî ñòðàòåãèè ó÷àñòíèêîâ ÿâëÿþòñÿ ñòðîãî âîçðàñòàþùèìè. Èç ëåìì 1.1-1.3 ñëåäóþòíåîáõîäèìûå è äîñòàòî÷íûå óñëîâèÿ ðàâíîâåñèÿ ñðåäè ñòðîãî âîçðàñòàþùèõ(ò.÷. ïðîèçâîäíàÿ êîíå÷íà è áîëüøå íóëÿ âî âñåõ òî÷êàõ) è äèôôåðåíöèðóåìûõñòðàòåãèé.Òåîðåìà 1.2. Ïóñòü ôóíêöèè ðàñïðåäåëåíèÿ F (x) è G(x) èìåþò ïëîòíîñòèf (x) è g(x), íåïðåðûâíûå è ïîëîæèòåëüíûå íà (0, 1).F (x) ∼ h1 xα ,f (x) ∼ αh1 xα−1 , ïðè x → 0,1 − G(x) ∼ h2 (1 − x)γ ,g(x) ∼ γh2 (1 − x)γ−1 , ïðè x → 1,ãäå h1 , h2 , α, γ ∈ (0, +∞).Ìàðãèíàëüíûå öåíû 0 < a < c < 1 óäîâëåòâîðÿþò òîæäåñòâàì(1 − G(a) =(F (c) =)12+ag(a),α12+γ)(1 − c)f (c).Âûïîëíÿþòñÿ óñëîâèÿ îïòèìàëüíîñòè â êðàéíèõ òî÷êàõ{∫xarg max x(1 − G(x)) −}ydG(y) = a,x∈[0,a]0{∫1arg max (2 − x)F (x) +}ydF (y) = c.x∈[c,1]xÔóíêöèè U (t), V (t) äèôôåðåíöèðóåìûå íà [a, c], ïðèíèìàþùèå çíà÷åíèÿt < U (t) < 1, 0 < V (t) < t íà (a, c), ÿâëÿþòñÿ ðåøåíèåì êðàåâîé çàäà÷èU ′ (t) =1 − G(U (t)),2(t − V (t))g(U (t))a < t < c,V ′ (t) =F (V (t)),2(U (t) − t)f (V (t))a < t < c,28U (a) = a, V (c) = c,ïðè÷åì V (a) = 0, U (c) = 1.Òîãäà ñòðîãî âîçðàñòàþùèå è äèôôåðåíöèðóåìûå íà [0, c] è [a, 1] ïðîôèëèñòðàòåãèé ïðîäàâöîâ è ïîêóïàòåëåé{S(s) ={−1V (s), 0 ≤ s ≤ c,s,c ≤ s ≤ 1,B(b) =b,0 ≤ b ≤ a,U −1 (b), a ≤ b ≤ 1,îáðàçóþò áàéåñîâñêîå ðàâíîâåñèå â ìîäåëè îäíîøàãîâîãî äâóõñòîðîííåãî äâîéíîãî çàêðûòîãî àóêöèîíà ñ ðàñïðåäåëåíèÿìè F (x) è G(x) ðåçåðâíûõ öåí.Ðèñ.
1.3. Ðàâíîâåñíûå ïðîôèëè ñòðàòåãèé.Ðèñ. 1.4. Îáëàñòü ñäåëêè (ïî òåîðåìå 1.2).Íèæå ìû ïîêàæåì, ÷òî â òåîðåìàõ 1.1 è 1.2 íåëüçÿ îòêàçàòüñÿ îò óñëîâèéîïòèìàëüíîñòè â êðàéíèõ òî÷êàõ.Çàìåòèì, ÷òî åñëè 0 < f (0) < +∞, òîF (x) ∼ f (0)x,f (x) ∼ f (0), ïðè x → 0,ò. å. α = 1 â óñëîâèè òåîðåìû 1.2.Àíàëîãè÷íî, åñëè 0 < g(1) < +∞, òî1 − G(x) ∼ g(1)(1 − x),g(x) ∼ g(1), ïðè x → 1,29ò. å. γ = 1 â óñëîâèè òåîðåìû 1.2.Îáîçíà÷èìbG(x)= x(1 − G(x)) −∫xydG(y),(1.25)ydF (y).(1.26)0Fb(x) = (2 − x)F (x) +∫1x òåîðåìàõ 1.1 è 1.2 äëÿ âûïîëíåíèÿ óñëîâèé îïòèìàëüíîñòè â êðàéíèõb , x ∈ (0, a), è íåâîçðàñòàíèÿ Fb(x), x ∈ (c, 1),òî÷êàõ äîñòàòî÷íî íåóáûâàíèÿ G(x)ò.å.1 − G(x) − 2xg(x) ≥ 0,2(1 − x)f (x) − F (x) ≤ 0,x ∈ (0, a),x ∈ (c, 1).(1.27)(1.28)Åñëè g(x) îãðàíè÷åíà ñâåðõó â îêðåñòíîñòè x = 0, òî îáîçíà÷èì A ∈ (0, 1) íàèìåíüøèé êîðåíü óðàâíåíèÿ2xg(x) = 1 − G(x),x ∈ (0, 1],òîãäà ïåðâîå óñëîâèå îïòèìàëüíîñòè â êðàéíèõ òî÷êàõ âåðíî äëÿ âñåõ a ∈ (0, A].Àíàëîãè÷íî, åñëè f (x) îãðàíè÷åíà ñâåðõó â îêðåñòíîñòè x = 1, òî îáîçíà÷èìC ∈ (0, 1) íàèáîëüøèé êîðåíü óðàâíåíèÿ2(1 − x)f (x) = F (x),x ∈ [0, 1),òîãäà âòîðîå óñëîâèå îïòèìàëüíîñòè â êðàéíèõ òî÷êàõ âåðíî äëÿ âñåõ c ∈ [C, 1).Íà èíòåðâàëå [0, 1] ñóùåñòâóåò ðåøåíèå óðàâíåíèé äëÿ íàõîæäåíèÿ ìàðãèíàëüíûõ öåí a, c òåîðåìû 1.2.
Íàïðèìåð, â óðàâíåíèè äëÿ c âèäèì, ÷òî ïðèc = 0 ëåâàÿ ÷àñòü óðàâíåíèÿ íå ïðåâîñõîäèò ïðàâîé ÷àñòè, à ïðè c = 1 íàîáîðîò, ïðàâàÿ ÷àñòü íå ïðåâîñõîäèò ëåâîé. Êðîìå òîãî, ôóíêöèè F (x), f (x) ïðåäïîëàãàþòñÿ íåïðåðûâíûìè. Ýòî ñïðàâåäëèâî äàæå åñëè f (x) íå íåïðåðûâíà âòî÷êå x = 1, òàê êàê èíòåãðàë îò ïëîòíîñòè ñõîäèòñÿ.
Àíàëîãè÷íî ïðîâîäÿòñÿðàññóæäåíèÿ â óðàâíåíèè äëÿ a.Ýòè óðàâíåíèÿ îïðåäåëÿþò öåíîâûå ãðàíèöû ñäåëêè a, c. Îäíàêî ïðè ýòîìäîëæíî âûïîëíÿòüñÿ 0 < a < c < 1. Åñëè a ≥ c, òî ýòî îçíà÷àåò, ÷òî ðàâíîâåñèÿ ïî òåîðåìå 1.2 íå ñóùåñòâóåò, è íóæíî èñêàòü åãî ñðåäè ðàâíîâåñèé ïî30òåîðåìå 1.1. Ïåðåéäåì îò ïîñòðîåííûõ ðåøåíèé U (t), V (t) íà èíòåðâàëå [a, c]ê îïòèìàëüíûì ñòðàòåãèÿì.