Диссертация (1150529), страница 8
Текст из файла (страница 8)
. . , n,βk =n+3k−1,4n+2ak =n+2k,4n+2µk =−λn−k+1 =−9k,2(2n+1)2(1.50)n ≥ 4, ïðè ýòîì ñóììàðíûé âûèãðûø ðàâåíEH1 +EH2 =n ∫∑k=1∫βk+1σkdyβk(y − x)dx =09n(n + 1).16(2n + 1)2Çàìåòèì, ÷òî ñòèìóëèðóþùåå ðàâíîâåñèå îáåñïå÷èâàåò ñäåëêè ñ ìàêñèìàëüíîé âåðîÿòíîñòüþ.  ñàìîì äåëå, âåðîÿòíîñòü ñäåëêè ïðè ïîðîãîâûõ ñòðàòåãèÿõèìååò âèäP{B(b) ≥ S(s)} =n ∫∑k=1∫βk+1βkdyσkdx =0n∑σk (βk+1 − βk ).(1.51)k=1Òîãäà óñëîâèÿ ïåðâîãî ðîäà, ïðè êîòîðûõ äîñòèãàåòñÿ ìàêñèìóì ýòîãî âûðàæåíèÿ, ñîâïàäàþò ñ óñëîâèÿìè (1.46)-(1.49), ñ òîé ëèøü ðàçíèöåé, ÷òî â óðàâíåíèÿõ (1.49) èçìåíèòñÿ ïåðâîå âûðàæåíèå.∂L= (βk+1 − βk )+∂σk+λk(ak − ak−1 )σk−1(ak+1 − ak )σk+1−λ+ µk = 0,k+12(σk − σk−1 )22(σk+1 − σk )2k = 1, ..., n.(1.52)Íî ïðè çíà÷åíèÿõ ïàðàìåòðîâ (1.50) 2(βk+1 + βk − 2σk ) = 1 è, ñëåäîâàòåëüíî, ïåðâûå âûðàæåíèÿ â óðàâíåíèÿõ (1.49) è (1.52) ñîâïàäàþò.
Òàêèì îáðàçîì,ïîðîãîâûå ñòðàòåãèè âèäà (1.39) è (1.40), ôîðìèðóþùèå ñòèìóëèðóþùåå ðàâíîâåñèå, òàêæå ìàêñèìèçèðóþò è âåðîÿòíîñòü ñäåëêè.Òàêèì îáðàçîì, íàéäåííûå ðåøåíèÿ ìàêñèìèçèðóþò êàê ñóììàðíûé âûèãðûø èãðîêîâ, òàê è âåðîÿòíîñòü ñäåëêè. Ïîäñòàâëÿÿ íàéäåííûå îïòèìàëüíûå50çíà÷åíèÿ â (1.51), ïîëó÷èì ìàêñèìàëüíóþ âåðîÿòíîñòü ñäåëêèP{B(b) ≥ S(s)} =n∑σk (βk+1 − βk ) =k=19 n(n + 1).8 (2n + 1)2Ïðè n → ∞ ýòè ïîðîãîâûå ñòðàòåãèè ðàâíîìåðíî ñõîäÿòñÿ ê íåïðåðûâíûìñòðàòåãèÿì, íàéäåííûì ðàíåå, ïðè ýòîì ñóììàðíûé âûèãðûø ñõîäèòñÿ ê 9/64,à ìàêñèìàëüíàÿ âåðîÿòíîñòü - ê 9/32.Òåîðåìà 1.6.
 ìîäåëè îäíîøàãîâîãî äâóõñòîðîííåãî äâîéíîãî çàêðûòîãî àóê-öèîíà â ñëó÷àå ðàâíîìåðíîãî ðàñïðåäåëåíèÿ ðåçåðâíûõ öåí íà [0, 1] n-ïîðîãîâûåïðîôèëè ñòðàòåãèé ïðîäàâöîâ{S(s) =n+2i4n+2 ,s,3i−34n+23n4n+23i≤ s < 4n+2,≤ s ≤ 1,i = 1, ..., nè ïðîôèëü ñòðàòåãèé ïîêóïàòåëåé{B(b) =n+20 ≤ b ≤ 4n+2,n+2in+3i−1n+3i+24n+2 ,4n+2 < b ≤ 4n+2 ,b,i = 1, ..., näëÿ ñëó÷àåâ n ≥ 4 ñðåäè âñåõ áàéåñîâñêèõ ðàâíîâåñèé ñ n ïîðîãàìè ìàêñèìèçèðóþò ñóììàðíûé îæèäàåìûé äîõîä ó÷àñòíèêîâEH1 +EH2 =9n(n + 1)9→6416(2n + 1)2è âåðîÿòíîñòü ñäåëêèP{B(b) ≥ S(s)} =99n(n + 1)→ .28(2n + 1)32Ïðè n → ∞ ýòè ïîðîãîâûå ïðîôèëè ñòðàòåãèé ðàâíîìåðíî ñõîäÿòñÿ ê ðàâíîâåñèþ ñ íåïðåðûâíûìè ïðîôèëÿìè ñòðàòåãèé{S(s) =23ss,+14,0≤s≤34 ≤ s ≤ 1,34,{B(b) =b,23b +0 ≤ b ≤ 14 ,1112 , 4 ≤ b ≤ 1.51Ñòèìóëèðóþùåå íåïðåðûâíîå ðàâíîâåñèå.
Àíàëîãè÷íî êàê â [2] äîêà-æåì, ÷òî ïðè ðàâíîìåðíîì ðàñïðåäåëåíèè ðåçåðâíûõ öåí ïðîäàâöîâ è ïîêóïàòåëåé íàéäåííîå íåïðåðûâíîå ðàâíîâåñèå (1.45) äà¼ò íàèáîëüøèé ñóììàðíûéîæèäàåìûé äîõîä ó÷àñòíèêîâ è íàèáîëüøóþ âåðîÿòíîñòü çàêëþ÷åíèÿ ñäåëêè.Äîïóñòèì S(s), B(b) ëþáîå áàéåñîâñêîå ðàâíîâåñèå â äàííîé çàäà÷å. Îïðåäåëèìñëåäóþùèå ôóíêöèè:{p(x, y) =1 åñëè x ≤ y,0 åñëè x > y ,∫1p1 (t1 ) =p(S(t1 ), B(t2 ))g(t2 )dt2 ,0∫1p2 (t2 ) =p(S(t1 ), B(t2 ))f (t1 )dt1 ,0∫1h1 (s, ŝ) =(S(ŝ) + B(y))− s)p(S(ŝ), B(y))g(y)dy,20∫1(b −h2 (b, b̂) =S(x) + B(b̂))p(S(x), B(b̂))f (x)dx.20Äëÿ ëþáûõ s, ŝ ñïðàâåäëèâû íåðàâåíñòâà h1 (s, s) ≥ h1 (s, ŝ) è h1 (ŝ, ŝ) ≥ h1 (ŝ, s).Èç ýòèõ äâóõ íåðàâåíñòâ ëåãêî ïîëó÷èòü, ÷òî(ŝ − s)p1 (s) ≥ h1 (s, s) − h1 (ŝ, ŝ) ≥ (ŝ − s)p1 (ŝ).Îòêóäà âûòåêàåò, ÷òî p1 (t1 ) íåâîçðàñòàþùàÿ ôóíêöèÿ, èíòåãðèðóåìàÿ ïî Ðèìàíó, è äëÿ ïî÷òè âñåõ s∫1h1 (s, s) =p1 (t1 )dt1 .sÀíàëîãè÷íî ìîæíî äîêàçàòü, ÷òî∫bh2 (b, b) =p2 (t2 )dt2 .052Íàéäåì åù¼ îäíó ôîðìóëó äëÿ ñóììàðíîãî äîõîäà∫1 ∫1(y − x)p(S(x), B(y))f (x)g(y)dxdy =EH1 +EH2 =00∫1=∫1∫1h1 (x, x)f (x)dx +h2 (y, y)g(y)dy =0∫1=0∫1 ∫bp2 (t2 )dt2 g(y)dy =p1 (t1 )dt1 f (x)dx +s00∫1 ∫t1=∫1 ∫1p1 (t1 )f (x)dxdt1 +001∫=p2 (t2 )g(y)dydt2 =0p1 (t1 )F (t1 )dt1 +0∫1∫1p2 (t2 )(1 − G(t2 ))dt2 =∫1p(S(t1 ),B(t2 ))g(t2 )dt2 F (t1 )dt1 +0t2∫10∫100p(S(t1 ),B(t2 ))f (t1 )dt1 (1−G(t2 ))dt2 =00∫1 ∫1(F (x)g(y) + (1 − G(y))f (x))p(S(x), B(y))dxdy.=00Ïðèðàâíÿâ ïåðâîå è ïîñëåäíåå âûðàæåíèÿ, ïîëó÷àåì ÷òî â ðàâíîâåñèè âñåãäàâûïîëíåíî òîæäåñòâî∫1 ∫1([y −0F (x)1 − G(y)] − [x +])p(S(x), B(y))f (x)g(y)dxdy = 0.g(y)f (x)0Òàêèì îáðàçîì äëÿ ëþáîãî λ ïðè ðàâíîâåñíûõ S(s), B(b)EH1 +EH2 =∫1 ∫1F (x)1−G(y)]−[(1+λ)x+λ])p(S(x), B(y))f (x)g(y)dxdy.=([(1+λ)y−λg(y)f (x)0053Ìàêñèìóì ñóììàðíîãî âûèãðûøà áóäåò äîñòèãàòüñÿ, åñëè{p(S(s), B(b)) =F (s)1, (1 + λ)b − λ 1−G(b)g(b) ≥ (1 + λ)s + λ f (s) ,0, èíà÷å.(1.53)Àíàëîãè÷íî äëÿ ëþáîãî λ ïðè ðàâíîâåñíûõ S(s), B(b)∫1 ∫1P{B(b)≥S(s)}=(1+λ[y−01−G(y)F (x)]−λ[x+])p(S(x), B(y))f (x)g(y)dxdy.g(y)f (x)0Ìàêñèìóì âåðîÿòíîñòè ñäåëêè áóäåò äîñòèãàòüñÿ, åñëè{p(S(s), B(b)) =1, 1 + λ[b −1−G(b)g(b) ]≥ λ[s +F (s)f (s) ],0, èíà÷å.(1.54) ñëó÷àå ðàâíîìåðíîãî ðàñïðåäåëåíèÿ ðåçåðâíûõ öåí íà èíòåðâàëå [0,1]óñëîâèå äëÿ ñóììàðíîãî äîõîäà âûïîëíåíî ïðè λ = 1/2, à äëÿ âåðîÿòíîñòèñäåëêè ïðè λ = 2 äëÿ íàéäåííîãî íåïðåðûâíîãî ðàâíîâåñèÿ (1.45).1.5Ñðàâíåíèå íàéäåííûõ ðåøåíèé.
ÏðèìåðûÏîêàæåì, ÷òî â ëåììå 1.2 è òåîðåìàõ 1.1 è 1.2 íåëüçÿ îòêàçàòüñÿ îò óñëîâèéîïòèìàëüíîñòè â êðàéíèõ òî÷êàõ.Ïðèìåð 1.1. Ïðåäïîëîæèì, ðàñïðåäåëåíèå ðåçåðâíûõ öåí ïðîäàâöîâ ðàâíî-ìåðíîå íà âñåì èíòåðâàëå [0, 1], ò. å. f (x) = 1 è F (x) = x, à ïëîòíîñòü ðàñïðåäåëåíèÿ ðåçåðâíûõ öåí ïîêóïàòåëåé åñòü6x, 48x − 7,g(x) =−48x + 13, 1,åñëè x ∈ [0, 61 ],5åñëè x ∈ [ 61 , 24],5 1åñëè x ∈ [ 24, 4 ],åñëè x ∈ [ 41 , 1].Òàê êàê G(x) = x íà [ 14 , 1], òî ëåãêî çàìåòèòü, ÷òî óðàâíåíèÿ (1.12),(1.13) âãðàíèöàõ ( 14 , 34 ) èìåþò âèä (1.43),(1.44). Çíà÷èò, ïî ëåììå 1.3 ñòðàòåãèè (1.45)îïðåäåëÿþò ëîêàëüíûé ìàêñèìóì äëÿ ëè÷íîãî âûèãðûøà èãðîêîâ.
Ïî (1.45)54S(0) = 14 . Ïî (1.8) íàõîäèì âûèãðûø ïðîäàâöà ñ ðåçåðâíîé öåíîé s = 0 ïðèîáúÿâëåíèè öåíû S = 14(H110,4)∫1=23y+11214+2dy =9.3214Äàëåå ñðàâíèì ýòî çíà÷åíèå ñ âûèãðûøåì ïðè S =(H150,24)1∫4=5y + 24(−48y + 13)dy +2524ò. å. ñòðàòåãèÿ S =∫123y+524112+5242dy =19619> ,6912 321414äëÿ ïðîäàâöà c s = 0 íå ÿâëÿåòñÿ îïòèìàëüíîé. Çíà÷èò,ïðîôèëü ñòðàòåãèé (1.45) íå ÿâëÿåòñÿ áàéåñîâñêèì ðàâíîâåñèåì.Ïðèìåð 1.2. Ïóñòü α, γ ∈ (0, +∞) è ôóíêöèè ðàñïðåäåëåíèÿ ðåçåðâíûõ öåíG(x) = 1 − (1 − x)γ .Èç óñëîâèé òåîðåìû 1.2 ïîëó÷àåì çíà÷åíèÿ äëÿ ìàðãèíàëüíûõ öåíïðîäàâöîâ è ïîêóïàòåëåé åñòü F (x) = xα ,a=α + 2αγα<= c,α + 2αγ + γα + 2αγ + γà äèôôåðåíöèàëüíûå óðàâíåíèÿ èìåþò âèäU ′ (t) =1 − U (t),2γ(t − V (t))(1.55)V ′ (t) =V (t).2α(U (t) − t)(1.56)Ëåãêî óáåäèòüñÿ, ÷òî ëèíåéíûå ôóíêöèè(U (t) =(V (t) =)11x−,1+2α2(α + 2αγ + γ)11+2γ)(1x− 1+2γ)αα + 2αγ + γóäîâëåòâîðÿþò óðàâíåíèÿì (1.55),(1.56) íà (a, c) è ãðàíè÷íûì óñëîâèÿì êðàåâîéçàäà÷è.
Óñëîâèÿ îïòèìàëüíîñòè â êðàéíèõ òî÷êàõ âûïîëíåíû, òàê êàê âåðíû55(1.27) è (1.28) â çàìå÷àíèè ê òåîðåìå 1.2:(1 − x) − 2xγ(1 − x)γγ−12(1 − x)αxα−1≥ (1 − x)−x ≤xαγ−1α−1(1 − x)γ−1 γ(1 − a − 2aγ) =≥ 0,α + 2αγ + γ−αxα−1(2α − 2αc − c) =≤ 0.α + 2αγ + γÏåðåéäÿ ê îáðàòíûì ôóíêöèÿì U −1 , V −1 íàõîäèì îïòèìàëüíûå ñòðàòåãèè{S(s) =2γ2γ+1 s0 ≤ s ≤ c,αα+2αγ+γ ,+c ≤ s ≤ 1,s,{B(b) =0 ≤ b ≤ a,2αα2α+1 b + (α+2αγ+γ)(2α+1) , a ≤ b ≤ 1.b, ñëó÷àå α = γ óñëîâèå (1.53) äëÿ ðàâíîâåñèÿ, ñòèìóëèðóþùåãî íàèáîëüøèéñóììàðíûé äîõîä ïîêóïàòåëåé è ïðîäàâöîâ, âûïîëíåíî ïðè λ =α1+α ,à äëÿ âåðî-ÿòíîñòè ñäåëêè (1.54) âåðíî ïðè λ = 2α. Òàêèì îáðàçîì íàéäåííîå íåïðåðûâíîåðàâíîâåñèå ñòèìóëèðóåò ìàêñèìàëüíûé äîõîä è âåðîÿòíîñòü ñäåëêè ñðåäè âñåõðàâíîâåñèé.Ïðèìåð 1.3.
Ïðåäïîëîæèì, ðåçåðâíûå öåíû ïðîäàâöîâ è ïîêóïàòåëåé èìåþò2ðàñïðåäåëåíèå F (x) = 1 − (1 − x) , x ∈ [0, 1] è G(x) = x2 , x ∈ [0, 1]. Ïî òåîðåìå 1.5 íàéäåì ñòèìóëèðóþùåå 3-ïîðîãîâîå ðàâíîâåñèå. Óñëîâèÿ îïòèìàëüíîñòèâ êðàéíèõ òî÷êàõ}5− x 3 + x = a1 ,3x∈[0,a1 ]}{5 3x − 5x2 + 4x = a3 ,arg maxx∈[a3 ,1] 3√√âûïîëíÿþòñÿ äëÿ a1 ≤ 1/ 5 è a3 ≥ 1 − 1/ 5. Âûáåðåì a1 , a2 , a3 òàêèìè, ÷òîáûìàêñèìèçèðîâàòü ñóììàðíûé âûèãðûøarg max{∫EH1 +EH2 =E(b−s)I{B(b)≥S(s)} =4∫∫β3+4y dyβ20σ2∫β2y dyβ1σ1(y − x)(1 − x) dx+0∫∫1(y − x)(1 − x) dx + 4y dyβ30σ3(y − x)(1 − x) dx.56×èñëåííûå ðàñ÷åòû ïîêàçûâàþò, ÷òî ìàêñèìóì ñóììàðíîãî âûèãðûøà äîñòèãàåòñÿ ïðè a1 ≈ 0.4139, a2 = 0.5, a3 ≈ 0.5861, ïðè ýòîì, ïîðîãè ðàâíûσ1 ≈ 0.2504, σ2 ≈ 0.4135, σ3 ≈ 0.5861,β1 ≈ 0.4139, β2 ≈ 0.5865, β3 ≈ 0.7496,è çíà÷åíèå ìàêñèìàëüíîãî âûèãðûøà ðàâíî EH1 +EH2 ≈ 0.3262, êîòîðîå ìåíüøå, ÷åì âûèãðûø 0.3289 â ðàâíîâåñèè ñ íåïðåðûâíûìè ñòðàòåãèÿìè èãðîêîâ,íàéäåííîì â [56]. òàáëèöå 1.1 ïðåäñòàâëåíû îïòèìàëüíûå ñòðàòåãèè, âûèãðûøè èãðîêîâ èâåðîÿòíîñòè ñäåëêè äëÿ ðàçëè÷íûõ ðàñïðåäåëåíèé ðåçåðâíûõ öåí.
 ñèììåòðè÷íîì ñëó÷àå âûèãðûøè èãðîêîâ ñîâïàäàþò.  ïÿòîì è øåñòîì ñëó÷àÿõ ïîêóïàòåëè íàõîäÿòñÿ â áîëåå ïðåäïî÷òèòåëüíîì ïîëîæåíèè, ÷åì ïðîäàâöû, è èõâûèãðûø áîëüøå.  ïåðâîì, ÷åòâåðòîì è ïÿòîì ñëó÷àÿõ ïîñ÷èòàíî ðàâíîâåñèåâ äâóõ âèäàõ. Ïðè ýòîì çàìåòèì, ÷òî íåïðåðûâíîå ðàâíîâåñèå, íàéäåííîå ïîòåîðåìå 1.2, ïðåäïî÷òèòåëüíåå äëÿ îáîèõ èãðîêîâ, ÷åì ðàâíîâåñèå ïîðîãîâîãîâèäà ïî òåîðåìàì 1.3-1.5.123456F (s)sG(b)bs21−(1−s)231−(1−s)21−(1−b)b2b34b2531−(1−s)1−(1−s)S(s)max{ 23 s+ 41 , s}bB(b)1min{ 23 b+ 12, b}EHsEHbPdeal0.0700.0700.2813-ïîðîãîâàÿ3-ïîðîãîâàÿ0.0680.0680.2731I+2I3 {s≤0.24} 3 {s>0.24}max{ 45 s+ 61 , s}1I+2I3 {b<0.76} 3 {b≥0.76}1min{ 45 b+ 30, b}0.0660.0660.2620.0130.0130.080òåîðåìà 1.2òåîðåìà 1.20.1640.1640.5873-ïîðîãîâàÿ3-ïîðîãîâàÿ0.1630.1630.583òåîðåìà 1.2òåîðåìà 1.20.2360.2360.775max{0.5, s}min{0.5, b}0.2320.2320.766òåîðåìà 1.2òåîðåìà 1.20.2020.2390.740max{0.425, s}max{0.438, s}min{0.425, b}min{0.438, b}0.1950.2380.7300.2540.3030.865Òàáëèöà 1.1.
Îïòèìàëüíûå ñòðàòåãèè, âåðîÿòíîñòè ñäåëêè è âûèãðûøè èãðîêîâ.57Ãëàâà 2Ìîäåëè ìíîãîøàãîâûõ ïåðåãîâîðîâ ñäèñêîíòèðîâàíèåì2.1Ìîäåëü ìíîãîøàãîâûõ äâóõñòîðîííèõòîðãîâ ïåðâîé ãëàâå ìû ðàññìîòðåëè îäíîøàãîâóþ ìîäåëü ïåðåãîâîðîâ ïðè çàêëþ÷åíèè ñäåëîê ìåæäó ïðîäàâöàìè è ïîêóïàòåëÿìè. Ïîêóïàòåëü è ïðîäàâåö,ñëó÷àéíî âñòðåòèâøèñü, îïðåäåëÿëè âîçìîæíîñòü îñóùåñòâëåíèÿ ñäåëêè òîëüêî íà îäíîì øàãå. Îäíàêî åñòåñòâåííî, ÷òî ýòà ïðîöåäóðà ïîâòîðÿåòñÿ ìíîãîðàç.Ó÷àñòíèêè ïåðåãîâîðîâ çäåñü ïðîäàâåö è ïîêóïàòåëü.