Диссертация (1136178), страница 19
Текст из файла (страница 19)
 ðåçóëüòàòå èìååì:(u + 1){a[u2 (u + 1)(−u3 + 8u2 + 30u + 25) − 2uu(3u3 + 6u2 − 5)−−5u2 (u2 + 3u + 3)] − 5(u2 + 5u + 5)(uu + u + u)2 } =q√= −(u +1)2 a(3uu +5u +5u +10)(uu + u + u)u u2 + (5 − a)(u + 1).(1.358)Äàëåå ñîêðàòèì (1.358) íàu+1è åùå ðàç âîçâåäåì â êâàäðàòïðàâóþ è ëåâóþ ÷àñòè (1.358). Ðàçëîæèâ ñëàãàåìûå íà ìíîæèòåëè,ïðèõîäèì ê óðàâíåíèþ(a − 1)(uu + u + u)2 (u2 + 5u + 5)2 {a[u2 (u + 5)2 + 10uu(u − 3) + 25u2 ]−−25(uu + u + u)2 } = 0.Ïîñêîëüêó ñèñòåìà (1.353), (1.354) ïðè2, 3áûëà èçó÷åíà âûøå, àa 6= 1,(1.359)z = z = ±1 è z = z = z j , j =òî ïîäåëèì (1.359) íà(a − 1)(uu + u + u)2 (u2 + 5u + 5)2 .Ïåðåéäåì çàòåì ê ïîëÿðíûì êîîðäèíàòàìðåçóëüòàòå, ïîñëå ñîêðàùåíèÿ íàρ2u = ρeiϕ , u = ρe−iϕ .Âïîëó÷àåì êâàäðàòíîå îòíîñè-157òåëüíîρóðàâíåíèå(a − 25)ρ2 + (20a − 100)ρ cos ϕ + 100(a − 1) cos2 ϕ − 80a = 0.Òàê êàê åãî äèñêðèìèíàíòdóäîâëåòâîðÿåò íåðàâåíñòâód = 320a(20 cos2 ϕ + a − 25) ≤ 320a(a − 5),òî ïðè1<a<5d < 0, à, ñëåäîâàòåëüíî, äðóãèõ ñòàöèz = z = 1, ôóíêöèÿ Ω(z, z) íå èìååò.
Ëåììàâåëè÷èíàîíàðíûõ òî÷åê, êðîìåäîêàçàíà.Òåîðåìà 1.8.Ôóíêöèÿ Ω(z, z) äîñòèãàåò ìàêñèìàëüíîãî çíà÷åíèÿïðè z = z = 1 .Äîêàçàòåëüñòâî. Ïîñêîëüêó ïðèΩ(x, x) =òî ôóíêöèÿ√x→∞ √√√1( a − 1)(5 − a)+Oa ln ( a + 1) − ln 2 +,2xx2Ω(x, x)óáûâàåò ïðè äîñòàòî÷íî áîëüøèõ ïîëîæèòåëü-x, è, ñëåäîâàòåëüíî, íå èìååò ìàêñèìóìà íà áåñêîíå÷íîñòè. Êðîiϕ∈^ z − , z + , òî çíà÷åíèåòîãî, åñëè z = eíûõìåΩ(z, z) =√√√a−1a−1√−lna ln (3 + 2 cos ϕ)+ a ln24 aìåíüøå çíà÷åíèÿ ôóíêöèèΩ(1, 1) =√Ωïðèz = z = 1,êîòîðîå ðàâíî√√√( 5 − a + 2 a)22( a + 1)√a ln+ ln √.4 a( 5 − a + 2)2Äåéñòâèòåëüíî, èç (1.360) âûòåêàåò, ÷òî ôóíêöèÿz ∈^ z − , z +äîñòèãàåò ìàêñèìóìà â òî÷êàõ|z| = 1Ω(z ± , z± ) < Ω(1, 1).îêðóæíîñòè(1.360)ôóíêöèÿS1 (|z|2 )z±.Ω(z, z)ïðèÀ, ïîñêîëüêó íàïîñòîÿííà, òî â ñèëó (1.315)Òàêèì îáðàçîì, îñòàåòñÿ ïðîâåðèòü, ÷òî â åäèíñòâåííîé äëÿΩ(z, z)ñòàöèîíàðíîé òî÷êåz = z = 1âûïîëíåíû äîñòàòî÷íûå158óñëîâèÿ ñóùåñòâîâàíèÿ ëîêàëüíîãî ìàêñèìóìà ôóíêöèè äâóõ ïåðåìåííûõ.
Ýòè óñëîâèÿ èìåþò âèä (1.178). Äèôôåðåíöèðóÿ çàäàííûåôîðìóëàìè (1.355), (1.356) ôóíêöèè åùå ðàç, íàõîäèì, ÷òî√√∂ 2Ω( 5 − a − 2 a)2∂ 2Ω√(1, 1) =(1, 1) =,∂z 240 a∂z 2Ñëåäîâàòåëüíî, ïðè∂ 2Ω1−a(1, 1) = √ .∂z∂z8 a1<a<5∂ 2Ω=∂x2√√D=√√5 − a ( 5 − a − 2 a)√< 0,10 a√√5 − a ( 5 − a − 2 a)2√> 0.200 aÒåîðåìà äîêàçàíà. ñèëó òåîðåìû 1.8. îñíîâíîé âêëàä â íîðìó àñèìïòîòè÷åñêî-p(z) âíîñèò ìàëàÿz = 1 ôóíêöèÿ p(z)ãî ðåøåíèÿ ìíîãîòî÷å÷íîé ñïåêòðàëüíîé çàäà÷èîêðåñòíîñòü òî÷êèz = z = 1.Òàê êàê âáëèçèçàäàåòñÿ ðàçëîæåíèåì (1.299), ïîäñòàâèì åãî â ôîðìóëó (1.219) äëÿñêàëÿðíîãî ïðîèçâåäåíèÿ è âû÷èñëèì àñèìïòîòèêó âîçíèêàþùåãîèíòåãðàëà.Îïðåäåëèìrθ(t, r, a) = exp (− 1 −Ëåììà 1.48.5−a4a!rt2 −!4a− 1 r2 ).5−a(1.361)Ñïðàâåäëèâî ðàâåíñòâîkp(z)k2P[m,n] =α12√a + 1( a − 1)√2k+1/2 π 5 − ap√×Σ0 (a)(1 + O(|m|−1 )),!|m|√ √√5 a ( a + 1) a+1×√ √(4 a) a|m| → ∞,(1.362)ãäå ôóíêöèÿ Σ0 (a) èìååò âèäZΣ0 (a) =R2θ(t, r, a) | Hk (t + ir) |2 dt dr.(1.363)159Äîêàçàòåëüñòâî.
Ðàçëîæèì ôóíêöèþu, u,ãäåuèz%W KB (|z|2 )ïî ñòåïåíÿìñâÿçàíû ðàâåíñòâàìè (1.284), (1.285).  ðåçóëüòàòåïîëó÷àåì:%W KB (|z|2 ) =p√|m| √∗|m|( a − 1)β(u + u)c2( a + 1)exp −+= 3/2 √√ √22a (4 a) a√22√√( a − 1)β 2(u+u)√−( a + 1) | u |2 +(3 a − 1)+{1−28 a√√ u3 + u3( a − 1)β 3 β(u + u)+ +p(3−5+− pa)√32 |m||m|16 a4√|u|+1+( a + 1) | u |2 (u + u) + O() .(1.364)|m|Ïîäñòàâëÿÿ çàòåì (1.299), (1.364) â ôîðìóëó (1.219), èìååì:kp(z)k2P[m,n]α12 µ2 c∗√= 3/22a √|m| Z2( a + 1)5(a − 1) | u |2+exp − √ √√ √a(4 a)8a5−aC√1u53a + 5+(− + √ √)(u2 + u2 ) {| Hk ( √ ) |2 + p √×4 16 a 5 − a2|m| 4 5 − a√ √(−9a + 12 a 5 − a − 15)(u3 + u3 )×{[−u − u ++√ √48 a 5 − a5(a − 1) | u |2 (u + u)u1uu+] | Hk ( √ ) |2 − √ [u2 Hk0 ( √ )Hk ( √ )+√ √16 a 5 − a22 222uu1+u2 Hk0 ( √ )Hk ( √ )]}}dz dz (1 + O()).|m|22Ââåäåì âåùåñòâåííûå ïåðåìåííûåtèr(1.365)ñîãëàñíî ôîðìóëå(1.184).
Òîãäà â ñèëó (1.185), à òàêæå ñîîòíîøåíèédz dz =20dt dr√,|m| 5 − a= 2(t2 − r2 )uuuuu2 Hk0 ( √ )Hk ( √ ) + u2 Hk0 ( √ )Hk ( √ ) =2222∂∂| Hk (t + ir) |2 +4tr| Hk (t + ir) |2∂t∂r160ðàâåíñòâî (1.365) ïðèíèìàåò âèäkp(z)k2P[m,n] =√|m| Z √α12 µ2 5 2c∗2( a + 1)θ(t, r, a){| Hk (t + ir) |2 +=√ √a√ √|m| a 5 − a (4 a)R2√√ √√5(−9a + 12 a 5 − a − 15)(t3 − 3tr2 )√ √ √+p √{[−2 2t ++6 2 a 5−a|m| 4 5 − a5(a − 1)(t2 + r2 )t1∂+ √ √ √] | Hk (t + ir) |2 − √ [(t2 − r2 ) | Hk (t + ir) |2 +∂t2 2 a 5−a2+2tr1∂| Hk (t + ir) |2 ]}}dt dr (1 + O()).∂r|m| ôîðìóëå (1.366) ñëàãàåìûå ïîðÿäêà|m|−1/2(1.366)ïðåäñòàâëÿþò ñîáîéèíòåãðàëû îò íå÷åòíûõ ôóíêöèé â ñèììåòðè÷íûõ ïðåäåëàõ. Ñëåäîâàòåëüíî, îíè ðàâíû íóëþ.
Ëåììà äîêàçàíà.Äàëåå ðàññìîòðèì íîðìóËåììà 1.49.N (z).Ïðè |m| → ∞ èìååò ìåñòî îöåíêà√√kN (z)kP[m,n] = O(|m|−1/4 |c− |(a a (a − 1)a−1 |m|/2)).(1.367)Äîêàçàòåëüñòâî. Èç ôîðìóë (1.219), (1.307), à òàêæå íåðàâåíñòâà (1.314) âûòåêàåò, ÷òî√kN (z)k2P[m,n]=XO±√2( a−1)|m||z|Z×|z−z ± |>|m|−1+X√| c− |2 (a a (a − 1)|m|3/2W KBa−1 |m|)2%(| z | )dz dz| z − z ± |2√√O |m|1/2 | c− |2 (a a (a − 1)a−1 |m|)×!+×±Z×|z−z ± |<|m|−1%W KB (| z |2 )dz dz .(1.368)161Ïðîèçâåäåì çàìåíóZ2π0z=dϕ=| z − z ± |2√reiϕ , z ± = eiϕ± .2πZÏîñêîëüêó2πdϕ=,r − 2 r cos (ϕ − ϕ± ) + 1 | r − 1 |√0òî (1.368) ïðèíèìàåò âèäkN (z)k2P[m,n] =√2=O√a|c− | (a (a − 1)|m|3/2a−1 |m|)Zr√( a−1)|m| W KB√| r−1|>|m|−1√√| c− |2 (a a (a − 1) a−1 )|m| %W KB (1)|m|3/2+O%(r)dr|r−1|!.!+(1.369)Äàëåå âîñïîëüçóåìñÿ òåì, ÷òî ôóíêöèÿ√Π(r) = S1 (r) + ( a − 1) ln r,ãäåS1 (r)èìååò âèä (1.350), âîçðàñòàåò ïðèr > 0.Äåéñòâèòåëüíî,√ √√2 a( a − 1)dΠ(r)a−1= −p+=√drrΛ1 (r) + (2 a − 1)r + 1p√( a − 1)( Λ1 (r) − r + 1)= p> 0.√r( Λ1 (r) + (2 a − 1)r + 1)Ïîýòîìó íàèáîëüøèé âêëàä â èíòåãðàë â ôîðìóëå (1.369) äàåò îêðåñòíîñòü∞. ðåçóëüòàòå ïîëó÷àåì:r(Z√a−1)|m| W KB%(r)dr=|r−1|√| r−1|>|m|−1Z=O1∞r(√a−1)|m||m|r−(r2√a−1)|m|dr!= O(|m|).(1.370)162Íàêîíåö, ïîñêîëüêó ïðèr>0√ √dS1 (r)2 a( a − 1)= −p< 0,√drΛ1 (r) + (2 a − 1)r + 1òî ôóíêöèÿS1 (r)óáûâàåò, è, ñëåäîâàòåëüíî,√ √|m|a( a − 1)%W KB (1) %W KB (0) =.2π(1.371)Ïîäñòàâëÿÿ îöåíêè (1.370), (1.371) â (1.369), ïðèõîäèì ê ðàâåíñòâó(1.367).
Ëåììà äîêàçàíà.Äàëåå èç (1.294), (1.362) íàõîäèì, ÷òîkp(z)kP[m,n]×p√p√| c− | 5(k+1)/2 4 a + 1a−1√ ×=|m|k/2 (5 − a)3(k+1)/4 25(2k+1)/4 π!|m|/2√√√ 2 √a √a+1( 5 − a + 2 a) ( a + 1)1/2√√(Σ(a))×√0( 5 − a + 2)2 (4 a) a× 1 + O(|m|−1 ) , |m| → ∞.(1.372)kN (z)kP[m,n] ýêñïîíåíöèàëüíîèíòåðâàëå a ∈ (1, a0 ), ãäå a0 ≈Ñëåäîâàòåëüíî, â ñèëó (1.372), (1.367)kp(z)kP[m,n] íàòàêèõ a âûïîëíÿåòñÿìàëà ïî ñðàâíåíèþ ñ3.03,ïîñêîëüêó ïðè√a a (a − 1)√a−1√√√ √ √( 5 − a + 2 a)2 a ( a + 1) a+1√<.√ √( 5 − a + 2)2 (4 a) aÝêñïîíåíöèàëüíàÿ ìàëîñòü(1, 5)íåðàâåíñòâîkN (z)kP[m,n]íà âñåì èíòåðâàëåa∈âûòåêàåò èç (1.372) è îöåíêèkN (z)kP[m,n] = O | c− |√ !|m|√a( a + 1),2|m| → ∞.(1.373)Äåéñòâèòåëüíî, â ñèëó òåîðåìû 1.8.Ω(∞, ∞) < Ω(1, 1),(1.374)163à ôîðìóëà (1.352) ïîçâîëÿåò çàïèñàòü (1.374) â âèäå√√√√√ √ √( a + 1)2 a( 5 − a + 2 a)2 a ( a + 1) a+1√.<√ √4( 5 − a + 2)2 (4 a) aÎòìåòèì, ÷òî îöåíêà (1.373) äîêàçûâàåòñÿ àíàëîãè÷íî (1.367).
Ïðèåå âûâîäå èñïîëüçóåòñÿ àñèìïòîòèêà êîýôôèöèåíòîâζjñòåïåííî-ãî ðÿäà (1.317), êîòîðàÿ íàõîäèòñÿ ñ ïîìîùüþ äèñêðåòíîãî ìåòîäàÂÊÁ.Íàêîíåö, èç (1.131), (1.136), (1.362) è íåðàâåíñòâà Êîøè-Áóíÿêîâñêîãî ïîëó÷àåì, ÷òî àñèìïòîòèêà íîðìû ìíîãî÷ëåíàΦ(z)èìååòâèäkΦ(z)kP[m,n] = kp(z)k2P[m,n] + O(kp(z)kP[m,n] kN (z)kP[m,n] )+p√√1/2 α p4a+1a−11√+O(kN (z)k2P[m,n] )=×√2k/2+1/4 π 4 5 − a!|m|/2√ √√aa+15 ( a + 1)11/2) , |m| → ∞.(Σ0 (a))1 + O(√ √|m|(4 a) a×(1.375)ÇäåñüΣ0 (a)çàäàíà ôîðìóëîé (1.363).Òàêèì îáðàçîì, åñëè âõîäÿùàÿ â (1.299) êîíñòàíòà√ √2k/2+1/4 π 4 5 − ap√α1 = p√4a+1a−1!|m|/2√ √(4 a) a√ √√×5 a ( a + 1) a+1× (Σ0 (a))−1/2 1 + O(|m|−1 ) ,|m| → ∞,(1.376)kΦ(z)kP[m,n] = 1 + O(|m|−1 ), |m| → ∞, áóäåò âûïîëíåíî.Íàõîæäåíèå ìíîæèòåëÿ α1 â p(z) çàâåðøàåò ïîñòðîåíèå Φ(z).òî óñëîâèå3.11.Èòîãîâûå òåîðåìû.
Ôîðìóëû äëÿ êâàíòîâûõñðåäíèõÑïðàâåäëèâà164Òåîðåìà 1.9.Ïóñòü ÷èñëî4 √11ξ˜k = a + 1 +5 − a (k + ) + O( 2 ),|m|2|m|à ìíîãî÷ëåí Φk (z) îïðåäåëåí ôîðìóëîék = 0, 1, 2, . . . ,(0.12),(1.377)ãäå p(u) ðåøåíèåìíîãîòî÷å÷íîé ñïåêòðàëüíîé çàäà÷è, òàêîå, ÷òî α1 èìååò âèä√(1.376). Òîãäà ïðè n =a|m|, ãäå 1 < a < 5, ξ˜k è Φk (z) ÿâëÿþòñÿ àñèìïòîòè÷åñêèì ñîáñòâåííûì çíà÷åíèåì è àñèìïòîòè÷åñêîéñîáñòâåííîé ôóíêöèåé çàäà÷è,(1.229) ïðè |m| → ∞ â ïðîñòðàíñòâå P[m, n]. Áîëåå òî÷íî, åñëè ξ˜k èìååò âèä (1.377), òî(1.248)ìíîãî÷ëåí Φk (z) óäîâëåòâîðÿåò óðàâíåíèþ(1.248)ñ òî÷íîñòüþO(|m|−2 ) ñ îöåíêîé íåâÿçêè â íîðìå P[m, n], à òàêæå óñëîâèþ íîðìèðîâêè (1.229) ñ òî÷íîñòüþ O(|m|−1 ).Äîêàçàòåëüñòâî. Îöåíêà íåâÿçêè ïðîèçâîäèòñÿ àíàëîãè÷íî âû÷èñëåíèþ àñèìïòîòèêè íîðìû.
Îñíîâíîé âêëàä â àñèìïòîòèêó èí-z = z = 1 . Ïîýòîìó äîñòàz = 1 , ãäå îíà èìååò âèäòåãðàëà âíîñèò ìàëàÿ îêðåñòíîñòü òî÷êèòî÷íî îöåíèòü íåâÿçêó âáëèçè òî÷êèR = O((z − 1)4 p0 ) + O(|m|−2 p0 ) = O(|m|−2 (1 + (t2 + r2 )2 )p0 ).Çäåñüp0çàäàåòñÿ ðàâåíñòâîì (1.300), àÀñèìïòîòèêàkRkP[m,n]tèr ðàâåíñòâîì (1.184).ñîäåðæèò âìåñòî ôóíêöèèΣ0 (a),êàêáûëî â (1.375), ñëåäóþùèé èíòåãðàëZθ(t, r, a)(1 + (t2 + r2 )2 )2 | Hk (t + ir) |2 dt dr.R2 ðåçóëüòàòå ïîëó÷àåì, ÷òîkRkP[m,n] = O(|m|−2 ), |m| → ∞.Óñëîâèå íîðìèðîâêè (1.229) âûïîëíåíî â ñèëó (1.375), (1.376).Òåîðåìà äîêàçàíà.0Îòìåòèì, ÷òî îïåðàòîð000g0 (B) : P[m, n] → P[m, n],0ãäåB =0(B 0 , B 1 , B 2 , B 3 ), à g0 (b) èìååò âèä (1.217), ÿâëÿåòñÿ ýðìèòîâûì. Ïîýòîìó, êàê èçâåñòíî [54], âáëèçè àñèìïòîòè÷åñêèõ ñîáñòâåííûõ çíà÷åíèéξ˜k0èìåþòñÿ òî÷êè ñïåêòðà îïåðàòîðàg0 (B).165Ïåðåéäåì ê íàõîæäåíèþ àñèìïòîòèêè ñðåäíèõ çíà÷åíèé äèôôåðåíöèàëüíûõ îïåðàòîðîâ.
Âû÷èñëåíèå êâàíòîâûõ ñðåäíèõ ïðîèçâîäèòñÿ àíàëîãè÷íî âû÷èñëåíèþ íîðìû.Íà÷íåì ñ îáîñíîâàíèÿ ôîðìóëû (1.247). ÏóñòüΦk (z) àñèìï-òîòè÷åñêàÿ ñîáñòâåííàÿ ôóíêöèÿ çàäà÷è (1.248), (1.229), à îïåðàòî-0000B 0, B 1, B 2, B 3~ = 1/|m| .ðûËåììà 1.50.çàäàíû ôîðìóëàìè (1.227), ãäå ìàëûé ïàðàìåòðÏðè |m| → ∞ èìåþò ìåñòî ðàâåíñòâà00(B 0 Φk , Φk )P[m,n] = O(|m|−1 ), (B 1 Φk , Φk )P[m,n] = O(|m|−1 ),0(B 2 Φk , Φk )P[m,n] =0a−1a+1+ O(|m|−1 ), (B 3 Φk , Φk )P[m,n] =+44+O(|m|−1 ).(1.378)Äîêàçàòåëüñòâî. Îñíîâíîé âêëàä â àñèìïòîòèêó èíòåãðàëîâäëÿ ñðåäíèõ òàêæå âíîñèò ìàëàÿ îêðåñòíîñòü òî÷êèäëÿΦk (z)z=z=1ñïðàâåäëèâî ðàçëîæåíèå (1.299). Äèôôåðåíöèðóÿ, ãäåp(z),íàõîäèì, ÷òî√√√1 dp ( a − 1)p1(z − 1)=(p0 + p ) +(5 − 3 a − 5 − a)p0 +|m| dz210|m|p√√√ !|m|( a − 1) 5u5 − 3 a u2√+ −1 + √×4245−a5−ap√6|m|( a − 1)βup0u0 u×Hk ( √ ) + O() + O(p0 ) + exp+|m||m|22√(5 − 3 a)β 2 u2u dy0u5 dy0+(O() + O()).(1.379)20|m| du|m| du√α1 µ 4 5 − a+ p √ exp|m| 10Ñëåäîâàòåëüíî,00p1p11)=(B 0 Φk , Φk )P[m,n] = (B 0 (p0 + p ), p0 + p )P[m,n] + O(|m||m||m|166√√√p1(z − 1)(5 − 3 a − 5 − a)p0 += (( a − 1)(p0 + p ) +5|m|p√√ √√√ !|m|( a − 1) 5uα1 µ 2 4 5 − a5 − 3 a u2√+ p √exp+ −1 + √×4245−a5−a|m| 5√√p1p1u×Hk0 ( √ )+(z−1)( a−1)p0 −( a−1)(p0 + p ), p0 + p )P[m,n] +2|m||m|+O(|m|−1 ) = O(|m|−1 ).(1.380) ôîðìóëå (1.380)Zθ(t, r, a)(t + ir) | Hk (t + ir) |2 dt dr = 0,(1.381)R2ZR2Z1=θ(t, r, a)2R2θ(t, r, a)Hk0 (t + ir)Hk (t − ir)dt dr =∂∂| Hk (t + ir) |2 −i | Hk (t + ir) |2 dt dr = 0,∂t∂r(1.382)òàê êàê â (1.381), (1.382) èíòåãðèðóþòñÿ íå÷åòíûå ôóíêöèè â ñèììåòðè÷íûõ ïðåäåëàõ.Àíàëîãè÷íî, ïîñêîëüêó√√√1 d2 p ( a − 1)2(z − 1)( a − 1)p1p=)+a−(p+(5−302|m|2 dz410|m|p√√√√|m|( a − 1) 5uα1 µ 4 5 − a( a − 1)p √√− 5 − a)p0 +exp+245−a|m| 10√ 5 − 3 a u2up0u6+ −1 + √Hk0 ( √ ) + O() + O(p0 )+4|m||m|5−a2!p√√22|m|( a − 1)βu (5 − 3 a)β uu dy0+)++ exp(O(220|m| du√u5 dy0+O()),|m| du(1.383)167òî â ñèëó (1.381), (1.382)0(B 1 Φk , Φk )P[m,n]p√− aα1 µ exp√√√i45−a5−a u√ p0 −=p √ (a−22|m| 10√√√ 2!|m|( a − 1) 5u5−3 a u√√+−1+×4245−a5−au×Hk0 ( √ ), p0 )P[m,n] + O(|m|−1 ) = O(|m|−1 ).2Íàêîíåö, ó÷èòûâàÿ (1.379), (1.383), èìååì:0(B 2 Φk , Φk )P[m,n] = (a−11+ O(),4|m|==((a − 1)p1p11(p0 + p ), p0 + p )P[m,n] + O()=4|m||m||m|0(B 3 Φk , Φk )P[m,n] =(a + 1)p1p11a+11(p0 + p ), p0 + p )P[m,n] + O()=+ O(),4|m|4|m||m||m|Ëåììà äîêàçàíà.Èç ðàâåíñòâ (1.378) è ôîðìóëû Òåéëîðà âûòåêàåò0Òåîðåìà 1.10.000Ïóñòü F (B 0 , B 1 , B 2 , B 3 ) îïåðàòîð, ãäå F (b0 , b1 ,b2 , b3 ) ìíîãî÷ëåí, òàêîé, ÷òî F (0, 0, (a − 1)/4, (a + 1)/4) 6= 0,0000à îïåðàòîðû B 0 , B 1 , B 2 , B 3 óïîðÿäî÷åíû ïî Âåéëþ.