Диссертация (1136178), страница 54
Текст из файла (страница 54)
— 1928. — Vol. 24. —Pp. 426–437.129.Hartree, D. R. The wave mechanics of an atom with a nonCoulomb central field. Part IV. Further results relating toterms of the optical spectrum / D. R. Hartree // Proceedingsof the Cambridge Philosophical Society. — 1929. — Vol. 25. —Pp. 310–314.130.Herrick, D. R. Symmetry of the quadratic Zeeman effect forhydrogen / D. R. Herrick // Physical Review A. — 1982.
—Vol. 26, no. 1. — Pp. 323–329.460131.Horst, E. On the classical solutions of the initinal value problemfor the unmodified non-linear Vlasov equation / E. Horst //Mathematical methods in the applied sciences. — 1981. —Vol. 3, no. 2. — Pp. 229–248.132.Karasev, M. V. Birkhoff resonances and quantum ray method /M. V.
Karasev // Proc. Intern. Seminar ”Days of Diffraction 2004 ”. — St. Petersburg University, Steklov Math. Institute.St. Petersburg, 2004. — Pp. 114–126.133.Karasev, M. V. Noncommutative algebras, nano-structures, andquantum dynamics generated by resonances. I. / M. V. Karasev // Quantum Algebras and Poisson Geometry in Mathematical Phisics. Vol. 216. — Providence, RI : American Mathematical Society, 2005. — Pp.
1–18. — (American MathematicalSociety Translations Ser. 2).134.Karasev, M. V. Noncommutative algebras, nano-structures, andquantum dynamics generated by resonances. II. / M. V. Karasev // Advanced Studies in Contemporary Mathematics. —2005. — Vol. 11, no. 1. — Pp. 33–56.135.Karasev, M. V. Noncommutative algebras, nano-structures, andquantum dynamics generated by resonances. III. / M. V. Karasev // Russian Journal of Mathematical Physics.
— 2006. —Vol. 13, no. 2. — Pp. 131–150.136.Karasev, M. V. Resonance gyrons and quantum geometry /M. V. Karasev // From geometry to quantum mechanics. InHonor of Hideki Omori. Vol. 253. — Boston : Birkhauser,2007. — Pp. 253–275. — (Progress in mathematics).137.Karasev, M. V., Novikova, E. M. Non-Lie permutation relations, coherent states, and quantum embedding / M. V. Karasev, E.
M. Novikova // Coherent Transform, Quantization, andPoisson Geometry. Vol. 187. — Providence, RI : AmericanMathematical Society, 1998. — Pp. 1–202. — (American Mathematical Society Translations Ser. 2).461138.Karasev, M. V., Pereskokov, A. V. Global asymptotic and quantization rules for nonlinear differential equations / M. V. Karasev, A.
V. Pereskokov // Asymptotic Methods for Wave andQuantum Problems. Vol. 208. — Providence, RI : AmericanMathematical Society, 2003. — Pp. 165–234. — (AmericanMathematical Society Translations Ser. 2).139.Kurlandski, J. Nonlocal equation of nonlinear electrodynamics /J. Kurlandski // Bulletin of the Polish Academy of Sciences. —1982. — Vol. 30, no. 3–4. — Pp.
135–153.140.Langmuir, I., Blodgett, K. Currents limitid by space charge between concentric spheres / I. Langmuir, K. Blodgett // PhysicalReview. — 1924. — Vol. 24, no. 1. — Pp. 49–59.141.Lieb, E. H. Existence and uniqueness of the minimizing solutionof Choquard’s nonlinear equation / E. H. Lieb // Studies inApplied Mathematics. — 1977. — Vol. 57. — Pp.
93–105.142.Lieb, E. H., Simon, B. The Hartree-Fock theory for Coulombsystems / E. H. Lieb, B. Simon // Communication in Mathematical Physics. — 1977. — Vol. 53, no. 3. — Pp. 185–194.143.Lin, C. C., Lau, Y. Y. Density wave theory of spiral structureof galaxies / C. C.
Lin, Y. Y. Lau // Studies in Applied Mathematics. — 1979. — Vol. 60, no. 2. — Pp. 97–163.144.Lions, P. L. Solutions of Hartree-Fock equations for Coulombsystems / P. L. Lions // Communication in Mathematical Physics. — 1987. — Vol. 109, no. 1. — Pp. 33–97.145.Lions, P. L. Some remarks on Hartree equation / P. L. Lions //Nonlinear Analysis: Theory, Methods and Applications. —1981. — Vol. 5, no. 11. — Pp. 1245–1256.146.Lions, P. L. The Choquard equation and related quations /P. L. Lions // Nonlinear Analysis: Theory, Methods and Applications. — 1980. — Vol. 4, no. 6.
— Pp. 1063–1072.462147.Marsden, J. E., Weinstein, A. The Hamilton structure of theMaxwell-Vlasov equations / J. E. Marsden, A. Weinstein //Phisica. — 1982. — Vol. D4, no. 3. — Pp. 394–406.148.Menzala, G. P. On a Hartree type equation: existence of regularsolutions / G. P. Menzala // Lecture Notes in Mathematics. —1980. — Vol. 799. — Pp. 277–288.149.Menzala, G. P., Strauss, W. A. On a wave equation with acubic convolution / G. P.
Menzala, W. A. Strauss // DifferentialEquations. — 1982. — Vol. 43, no. 1. — Pp. 93–105.150.Nakamitsu, K., Tsutsumi, M. The Cauchy problem for the coupled Maxwell-Schrödinger equations / K. Nakamitsu, M. Tsutsumi // Journal of Mathematical Physics. — 1986. — Vol. 27,no. 1. — Pp. 211–216.151.Pereskokov, A. Asymptotics of the Hartry–type operator spectrum near the lower boundaries of spectral clusters / A. Pereskokov // Applicaible Analysis.
— 2016. — Vol. 95, no. 7. —Pp. 1560–1569.152.Pereskokov, A. Asymptotics of the spectrum near the boundaries of spectral clusters for the Hartree-type operator / A.Pereskokov // Abstracts of the Fifth International Conference”Multiscale Modeling and Methods: Upscaling in Engineeringand Medicine”. — M. : BMSTU, 2015. — Pp. 24–26.153.Pereskokov, A. V. Asymptotics of the spectrum of the hydrogen atom in a magnetic field near the lower boundaries of spectral clusters / A.
V. Pereskokov // Transactions of the MoscowMathematical Society. — 2012. — Vol. 73. — Pp. 221–262.154.Pereskokov, A. V. New type of semiclassical asymptotics eigenstates near the boundaries of spectral clusters for Schrödingertype operators / A. V. Pereskokov // International conference”Days on diffraction 2016”. Abstracts. — St. Petersburg : St.Petersburg University, Steklov Math. Institute, 2016. — P. 100.463155.Ralston, J. V. On the construction of quasimodes associatedwith stable periodic orbits / J. V.
Ralston // Communication inMathematical Physics. — 1976. — Vol. 51, no. 3. — Pp. 219–242.156.Reeken, M. General theorem on bifurcation and its applicationto the Hartree equation of the helium atom / M. Reeken //Journal of Mathematical Physics. — 1970. — Vol. 11. —Pp. 2505–2512.157.Ring, P., Schuck, P. The nuclear many-body problem / P. Ring,P.
Schuck. — Berlin : Springer, 1980. — P. 716.158.Rosensteel, G., Ihrig, E. Existence of Hartree-Fock solutions /G. Rosensteel, E. Ihrig // Journal of Mathematical Physics. —1980. — Vol. 21, no. 8. — Pp. 2297–2301.159.Schwinger, J. On angular momentum / J. Schwinger // Quantum Theory of Angular Momentum / ed. by L. C. Biedenham,H. van Dam. — New York : Academic Press, 1965. — Pp. 229–279.160.Strauss, W. A.
Nonlinear scattering theory at low energy: sequel / W. A. Strauss // Journal of functional analysis. —1981. — Vol. 43, no. 3. — Pp. 281–293.161.Stuart, C. Existence theory for the Hartree equation / C. Stuart // Archive for Rational Mechanics and Analysis. — 1973. —Vol. 51. — Pp. 60–69.162.Stuart, C. A., Toland, J. F., Williams, P.
G. Excited statesin the Hartree approximation for the hydrogen ion H − / C. A.Stuart, J. F. Toland, P. G. Williams // Proceedings of the RoyalSociety of London. — 1983. — Vol. A388, no. 1794. — Pp. 229–246.163.Weinstein, A. Asymptotics of the eigenvalues clusters for thelaplasian plus a potential / A. Weinstein // Duke MathematicalJournal. — 1977. — Vol. 44, no. 4. — Pp.
883–892.464164.Weinstein, A. Eigenvalues of the laplasian plus potential / A.Weinstein // Proceedings of the International Congress of Mathematicians, Helsinki, 1978. Vol. 2. — Helsinki, 1980. —Pp. 803–805.165.Wolkowsky, J. Existence of solutions of the Hartree equationfor N electrons, and application of the Schauder-Tychonoff theorem / J. Wolkowsky // Indiana university mathematics journal. — 1972. — Vol. 22. — Pp. 551–558..