Диссертация (1136178), страница 49
Текст из файла (страница 49)
 ñèëó (3.15) ïðèxe±x→ïîëó÷àåì: 2pxe± x ln |x − xe± | ln(8ex± )1K=−++O (x−ex± ) ln |x−ex± | .xe± + xxe± + x2ex±2ex±Ïîýòîìó (4.384) ìîæíî çàïèñàòü â âèäå2 1/3 n1U (ex− ) + h−π2ex−Z0xe− +εZχ− (x, ε) ln |x − xe− |∞−∞2g−(x, y) dydx+ZZ ∞ln(8ex− ) xe− +ε123/2+χ− (x, ε)g− (x, y) dydx + O ε ln +2ex−h0−∞pZ xe+ −ε/2e− x k dx(1 − χ− (x, ε) − χ+ (x, ε)) 2 xK++(ex− + x)xe− + x 2S 0 (x, h)xe− +ε/2ZZ ∞ 2pxoe+ xe− ∞123/2+Kχ+ (x, ε)g+ (x, y)dydx+O(ε ) =xe+ + xe−xe+ + xe−xe+ −ε−∞Z xe+ −ε/2(1 − χ− (x, ε) − χ+ (x, ε))1= O h1+1/57 ln+ O h1/3×h(ex− + x)xe− +ε/2Z 2pxe− x ∞ 2×KT (x, τ1 , h) cos 2Φ(x, τ1 , h) dτ1 dx , h → 0,xe− + x−∞(4.433)pZ xe− +εn2 xe+ xe−21χ− (x, ε)×U (ex+ ) + h1/3Kπxe+ + xe−xe+ + xe−0Z ∞2×g−(x, y) dydx + O(ε3/2 )+−∞xe+ −ε/2p2xe+ x k dx(1 − χ− (x, ε) − χ+ (x, ε))+K−(ex+ + x)xe+ + x 2S 0 (x, h)xe− +ε/2Z ∞Z ∞12−χ+ (x, ε) ln |x − xe+ |g+(x, y) dydx+2ex+ xe+ −ε−∞Z426∞Zln(8ex+ )+2ex+Z∞χ+ (x, ε)xe+ −ε−∞2g+(x, y) dydx1 o3/2=+ O ε lnhZ xe+ −ε/21(1 − χ− (x, ε) − χ+ (x, ε))×= O h1+1/57 ln+ O h1/3h(ex+ + x)xe− +ε/2Z 2pxe+ x ∞ 2×KT (x, τ1 , h) cos 2Φ(x, τ1 , h) dτ1 dx , h → 0.xe+ + x−∞(4.434)ÎïðåäåëèìD0 (ek± )ôîðìóëîé (4.262).
Àíàëîãè÷íî ëåììå 4.36.äîêàçûâàåòñÿËåììà 4.62.Ïðè h → 0 ñïðàâåäëèâû ðàâåíñòâàxe− +εZ0Zχ− (x, ε) ln |x − xe− |ZneD0 (k− ) +∞−∞2g−(x, y) dydx =e−ek− ξ (ln ξ)H(ξ) dξ+χ=h2e−1Z h2/3 hio h13/9 1 e− ek− ξ e+ ln √χH(ξ) dξ + O 5/3 ln , · D−1 (k− ) +32e−hεΩ−1(4.435)Z ∞Z ∞2χ+ (x, ε) ln |x − xe+ |g+(x, y) dydx =1/32/3x−Ω− 2πexe+ −ε1/3=h−∞2/3Ω+ 2πex+nZe+ek+ ξ χ(ln ξ)H(ξ) dξ+2e+1io h13/9 1 ek+ ξ H(ξ) dξ + O 5/3 ln .χ2e+hεD0 (ek+ ) +Z e+ h2/3 h+ ln √k+ ) + · D−1 (e3Ω+1(4.436)Äàëåå ïîäñòàâèì (4.429), (4.430), (4.435), (4.436) â (4.433),(4.434), èñêëþ÷èì ðàçáèåíèå åäèíèöû è ïðîèíòåãðèðóåì ïî ÷àñòÿìâ ñîäåðæàùèõcos 2Φ1/3U (ex− ) + 2hnèíòåãðàëàõ.
Îêîí÷àòåëüíî èìååì1/3−h2/3Ω−hZD0 (ek− ) +1e−iek−(ln ξ)H(ξ) dξ +2427+h1/3√3he−Z h· D−1 (ek− ) +x− Ω− 8e2/3Ω− ln 2/31iek−H(ξ) dξ +2Z xe+ −ε2/3 2pxe− x k dx1h1/3 Ω+ 2ex++K+×x− + x)xe− + x 2S 0 (x, h)xe+ + xe−xe− +ε π(eZ e+ eio 2pxe+ xe− hk+11+1/57eD−1 (k+ ) +H(ξ) dξ = O hln ,×Kxe+ + xe−2h1(4.437)n h1/3 Ω2/3 2ex 2pxe+ xe− h−−1/3U (ex+ ) + 2hKD−1 (ek− )+xe+ + xe−xe+ + xe−pZ xe+ −εZ e− ei2xe+ x k dx1k−H(ξ) dξ +K−+2x+ + x)xe+ + x 2S 0 (x, h)xe− +ε π(e1√Z e+ e 8ehi3kxΩ+ ++2/32/31/31/3e−h Ω+ D0 (k+ ) +(ln ξ)H(ξ) dξ + h Ω+ ln ×2h2/31Z e+ ehiok+11+1/57e× D−1 (k+ ) +H(ξ) dξ = O hln .(4.438)2h1Çäåñüh → 0, e±îïðåäåëåíû ôîðìóëîé (4.257).Ïðåîáðàçóåì ñîîòíîøåíèÿ (4.422), (4.425).
Àíàëîãè÷íî ëåììå4.37. äîêàçûâàåòñÿËåììà 4.63.Ïðè h → 0 ñïðàâåäëèâû ðàâåíñòâàΩ− = U 0 (ex− ) + h1/3Z∞xe− +εnh 2pxe− x 1E−x−xe−xe− + x 2pxee− x i kθ(ex+ − ε − x)k− Ω−1K−×−xe− + xxe− + x2πex− S 0 (x, h)(x − xe− )h1/3√ (x − xe− ) 3 Ω− o14/9+20/171×Hdx + O hln ,(4.439)hh2/3Z xe+ −ε nh 2pxe+ x 101/3Ω+ = −U (ex+ ) + hE+xe−xxe+x++−∞p2 xee+ x i kθ(x − xe− + ε)k+ Ω+1+K−×xe+ + xxe+ + x2πex+ S 0 (x, h)(ex+ − x)h1/3428√ (e1x+ − x) 3 Ω+ o4/9+20/171dx + O hln .×Hhh2/3(4.440)Íàêîíåö, ïðåîáðàçóåì óðàâíåíèå (4.397). Ïîäñòàâèì â ôîðìóëû (4.391), (4.392) äëÿj−èj+âìåñòîgâûðàæåíèÿ äëÿg−èg+ñîîòâåòñòâåííî. Òàê êàê â ñèëó (4.416) (4.418) 2√xx0 2pxex− 222K=K−×π(x + x0 )x + x0π(x + xe− )xe− + xπ(x + xe− ) x − x0 e− )(1 + | ln |x − xe− | |) ,× ln + O (x0 − xx−xe−x ∈ (ex− + ε, xe+ − ε)òî ïðèxe− +εZ0x0 → xe− ,(4.441)èìååìZ ∞ 2√xx0 22Kχ− (x0 , ε)g−(x0 , y 0 ) dy 0 dx0 =00π(x + x )x+x−∞nh 2pxei Z xe− +εx− 2K+ ln |x − xe− |χ− (x0 , ε)×=π(x + xe− )x+xe−0Z ∞Z xe− +ε20 000×g− (x , y ) dy dx −χ− (x0 , ε) ln |x0 − xe− |×−∞Z0∞×−∞2g−(x0 , y 0 ) dy 0 dx0Z− 2πex− h∞×−∞Îïðåäåëèì1/3G2− (ξ 0 , η 0 ) dη 0 dξ 02/3Ω−Ze−χ ξ0 −∞o+O ε3/2e−ξ ln 1 − 0 ×ξ1ln .h(4.442)D1 (ek± ) ôîðìóëîé (4.276).
Òàê êàê ñïðàâåäëèâà ëåì-ìà 4.38., òî èç ñîîòíîøåíèé (4.429), (4.435), (4.441), (4.442), (4.277)âûòåêàåò, ÷òî ïðèZ0xe− +εx ∈ (ex− + ε, xe+ − ε)Z ∞ 2√xx0 202Kχ− (x , ε)g−(x0 , y 0 ) dy 0 dx0 =00π(x + x )x+x−∞pZ e− h p2/3ex− 2 xex− 4ex− h1/3 Ω− n 2 xeD(k)1 −e=KD−1 (k− )++K+x+xe−x+xe−ξx+xe−1x − xo h13/9 1 e− i ek− ξ 0 13/200+ ln χH(ξ ) dξ + O 5/3 ln+ O ε ln=x − x0 2e−hhε429√Z2πex− Ω− xe− +εχ− (x0 , ε) 2 xx0 e=Kk− ×√0x + x0h1/3xe− +h2/3 / 3 Ω− π(x + x )p√ (x0 − xx− 4ex− n 1/3 2/3 2 xee− ) 3 Ω− 0dx +×Hh Ω− KD−1 (ek− )+2/3x+xe−x+xe−h√ h13/9 1 h 3 Ω− D1 (ek− ) o13/2+ O 5/3 ln++ O ε ln , h → 0. (4.443)x−xe−hhεÀíàëîãè÷íî äîêàçûâàåòñÿ, ÷òîZ ∞ 2√xx0 22Kχ+ (x0 , ε)g+(x0 , y 0 ) dy 0 dx0 =0)0π(x+xx+x−∞xe+ −εZ∞√√2πex+ Ω+χ+ (x0 , ε) 2 xx0 e=Kk+ ×π(x + x0 )x + x0h1/3xe+ −εp√ (en0 32 xex+ x + − x ) Ω+4ex+01/3 2/3×Hdx +h Ω+ KD−1 (ek+ )+2/3x+xex+xeh++√ h13/9 1 h 3 Ω+ D1 (ek+ ) o13/2++ O 5/3 ln+ O ε ln , h → 0.
(4.444)xe+ − xhhεZxe+ −h2/3 / 3 Ω+h8/9 L(x, h) = h8/9 `0+h10/9 `1 +h4/3 `2 +O(h13/9 `3 ) ïåðåä `1 , `2 ñòîÿò ìíîæèòåëè hµ , ãäå µ >1. Çàìåíèì ýòè ôóíêöèè íà ãëàâíûå ÷ëåíû àñèìïòîòèê. Ãëàâíûå÷ëåíû èìåþò îñîáåííîñòè ïðè x → xe± . Îñòàëüíûå áîëåå ãëàäêèåÄàëåå âîñïîëüçóåìñÿ òåì, ÷òî â ðàçëîæåíèèñëàãàåìûå âîéäóò â îñòàòî÷íûé ÷ëåí. Èç (4.409), (4.412) ïîëó÷àåìσ h (2πex− )2/3 (U 0 (ex− ))4/3 (2πex+ )2/3 |U 0 (ex+ )|4/3 i++`1 (x) =54k 2/3(x − xe− )2/3(ex+ − x)2/3h1/3h1/3+O+O+ O(1),(4.445)(x − xe− )7/6(ex+ − x)7/6x− )2 (U 0 (ex− ))3 (2πeu n (2πex+ )2 |U 0 (ex+ )|3 o`2 (x) = −++243k 2x−xe−xe+ − xh1/9h1/9+O+O+ O(1).(4.446)(x − xe− )7/6(ex+ − x)7/6430Îñòàåòñÿ ïîäñòàâèòü ñîîòíîøåíèÿ (4.404), (4.443) (4.446) â(4.397) è çàìåíèòü ïðè1/S 0 (x0 , h)íàH(ξ 0 ).Òåîðåìà 4.14.x0 ∈ (ex+ − ε, xe+ − ε/2), x0 ∈ (ex− + ε/2, xe− + ε)ÑïðàâåäëèâàÔóíêöèÿ S 0 (x, h) íà èíòåðâàëå x ∈ (ex− + ε, xe+ − ε)óäîâëåòâîðÿåò óðàâíåíèþ−(S 0 (x, h))2 + U (x)+√ 2√xx0 (x0 − x3Ω− 02ex−e)−e+Ω−Kk− Hdx +√0x + x0h2/3xe− +h2/3 / 3 Ω− (x + x )Z xe+ −ε 2√xx0 k dx011/3K++h0x + x0 S 0 (x0 , h)xe− +ε π(x + x )√Z xe+ −h2/3 / √3 2√xx0 Ω+3Ω+ 02ex+0eK+Ω+k+ H (ex+ − x ) 2/3 dx +(x + x0 )x + x0hxe+ −εn 4e 2pxe 2pxexx+ 2/3x4ex−−+2/32/3e+hKΩ− D−1 (k− ) +KΩ+ ×x+xe−x+xe−x+xe+x+xe+o k 2/3 h10/9 σ h (2πex− )2/3 (U 0 (ex− ))4/38/9e+×D−1 (k+ ) + h ρ+2πxS 054k 2/3(x − xe− )2/3√h√33(2πex+ )2/3 |U 0 (ex+ )|4/3 iΩ− D1 (ek− )Ω+ D1 (ek+ ) i4/3+−++ 2hx−xe−xe+ − x(ex+ − x)2/3h4/3 u n (2πex− )2 (U 0 (ex− ))3 (2πex+ )2 |U 0 (ex+ )|3 o+−= R(x, h).
(4.447)243k 2x−xe−xe+ − xxe− +εZÇäåñü1+1/57=O hR(x, h) =h13/9 h13/9 1ln+O+O, h → 0.h(x − xe− )7/6(ex+ − x)7/6(4.448)Ïîëîæèì â (4.432), (4.437) (4.440), (4.447) îñòàòî÷íûå ÷ëåíûðàâíûìè íóëþ, àòîãî, ïóñòüek− , ek+ çàäàäèì ðàâåíñòâàìè (4.427), (4.428). Êðîìåε = h26/57 .Òàêèì îáðàçîì, ïîëó÷åíà ñèñòåìà óðàâíåíèéäëÿ íàõîæäåíèÿ ôóíêöèéS(x, h)ïðèx ∈ (ex− + ε, xe+ − ε),à òàêæå431êîíñòàíòk, xe− , xe+ , Ω− , Ω+ .Áóäåì íàçûâàòü ýòó ñèñòåìó çàäà÷åéäëÿ ôàçû.Çàìå÷àíèåçèxe±4.27. Êîíñòàíòûôóíêöèè3.6.Ω±òðåáóþòñÿ, ÷òîáû îïðåäåëèòü âáëè-g± (x, y).Ïðàâèëî êâàíòîâàíèÿ. Îöåíêà íåâÿçêè.Ôîðìóëèðîâêà îñíîâíîé òåîðåìûÄëÿ ïîñòðîåíèÿ ãëîáàëüíîé àñèìïòîòèêè (0.65), (0.66), (0.68)îñòàåòñÿ çàïèñàòü ïðàâèëî êâàíòîâàíèÿ óñëîâèå, îáåñïå÷èâàþùååãëàäêîå ñøèâàíèå àñèìïòîòè÷åñêîãî ðåøåíèÿ.
 äàííîé çàäà÷å îíîn öåëûå; ôóíêöèÿ S 0 (x, h) > 0, à òàêæå êîíñòàíòû k > 0, xe− , xe+ , Ω− , Ω+ ÿâëÿþòñÿ ðåøåíèåì çàäà÷è äëÿ ôàçû;ε = h26/57 ; ek− , ek+ çàäàþòñÿ ðàâåíñòâàìè (4.427), (4.428), à S0,0 (ξ, ek)èìååò âèä (4.301), ãäå ôîðìóëîé (4.293). Âûâîä (4.301), êîòîðîå ïîëó÷åíî ñ òî÷íîñòüþO(h1/57 ln 1/h), h → 0,ñì. â 2.Ïðàâèëî (4.301) äàåò óðàâíåíèå äëÿ îïðåäåëåíèÿh → 0. Ïóñòü èõ ïðîèçâåäåíèå îãðàíè÷åíî íåêîòîðûìè êîíñòàíòàìè C1 , C2 òàê, ÷òîáû áûëîâûïîëíåíî (4.172).
Òîãäà λn (h) = O(1) ïðè n → ∞.Èòàê, ãëîáàëüíûå àñèìïòîòè÷åñêèå ðåøåíèÿ g = gn çàäà÷è(0.65), (0.66), (0.68) ïîñòðîåíû. Ïóñòü λ = λn (h) óäîâëåòâîðÿþòïðàâèëó (4.301). Òîãäà ïðè x ∈ (ex− + ε, xe+ − ε) àñèìïòîòè÷åñêèåWKB çàäàþòñÿ ôîðìóëàìè (4.193), (4.199), (4.200),ðåøåíèÿ gn = gnãäå îñòàòî÷íûå ÷ëåíû òàêîâû, ÷òî âûïîëíåíî (4.196). Äëÿ x âáëèçèè ëåâåå xe− ôóíêöèè gn îïðåäåëÿþòñÿ ðàâåíñòâàìè (4.413), (4.232),à äëÿ x âáëèçè è ïðàâåå xe+ ðàâåíñòâàìè (4.424), (4.239).
Âõîäÿùèå â (4.413), (4.424) ôóíêöèè G− , G+ óäîâëåòâîðÿþò ìîäåëüíîìóóðàâíåíèþ (0.45). Âáëèçè îò òî÷åê xe− + ε, xe+ − ε àñèìïòîòèêè ñîãëàñîâàíû ìåæäó ñîáîé. Èñïîëüçóÿ ðàçáèåíèå åäèíèöû, gn ìîæíî (4.301) âõîäÿò ïàðàìåòðûn → ∞λ = λn (h).èçàïèñàòü â âèäå (4.302).g = gn â óðàâíåíèå (0.65) è îöåíèì â íîðìå L2 (R+ ×R) âîçíèêàþùóþ íåâÿçêó Rn . Òàê êàê G± (ξ, η) ïðè ξ → −∞ ýêñïîÏîäñòàâèì432íåíöèàëüíî óáûâàþò, òîZxe− −ε Z ∞Rn2 dydx−∞0∞∞ZZ∞= O(h ),xe+ +ε ñèëó (4.394), (4.447) ïðè−∞Rn2 dydx = O(h∞ ), h → 0.x ∈ (ex− + ε, xe+ − ε)ïîëó÷àåì îöåíêór∗ , R îïðåäåëÿþòñÿ ðàâåíñòâàìè (4.393), (4.395), (4.448).Íàêîíåö, åñëè |ex− − x| < ε, òî Rn = r− , à, åñëè |ex+ − x| < ε, òîRn = r+ .
Çäåñü r− , r+ çàäàíû ôîðìóëàìè (4.423), (4.426), â êîòîðûõg = gn .Íåâÿçêà Rn îöåíèâàåòñÿ àíàëîãè÷íî 2. Èìååì:(4.303), ãäå1+1/57kRn kL2 (R+ ×R) = O hgnÊðîìå òîãîñòüþ1ln ,hh → 0.óäîâëåòâîðÿåò óñëîâèþ íîðìèðîâêè (0.66) ñ òî÷íî-O(h2/3+1/57),à òàêæå óñëîâèþ (0.68) c òî÷íîñòüþO(h).Äîêà-çàíà îñíîâíàÿ â 3Òåîðåìà 4.15.Ïóñòü ïàðàìåòðû h è n óäîâëåòâîðÿþò óñëîâèþ(4.172).Òîãäà ÷èñëà λ = λn (h), çàäàííûå ïðàâèëîì êâàíòîâàíèÿ(4.301),ÿâëÿþòñÿ àñèìïòîòè÷åñêèìè ñîáñòâåííûìè çíà÷åíèÿìèçàäà÷è(0.65), (0.66), (0.68)ñ òî÷íîñòüþ O(n−1−1/57 ln n) ïðè n →∞. Ñîîòâåòñòâóþùèå àñèìïòîòè÷åñêèå ñîáñòâåííûå ôóíêöèè g= gn óäîâëåòâîðÿþò (0.65) c òî÷íîñòüþ O(n−1−1/57 ln n) â íîðìåL2 (R+ × R), óñëîâèþ íîðìèðîâêè (0.66) c òî÷íîñòüþ O(n−2/3−1/57 ),à òàêæå óñëîâèþ (0.68) c òî÷íîñòüþ O(n−1 ).Çàìå÷àíèåíèÿ4.28. Îòìåòèì, ÷òî ïîñòðîåííûå àñèìïòîòè÷åñêèå ðåøå-gn (x, y)â êîíôèãóðàöèîííîì ïðîñòðàíñòâåR+ × Rïðèn→∞â ñëàáîì ñìûñëå ( êàê îáîáùåííûå ôóíêöèè ) ñîñðåäîòî÷åíû íà ìàëîìåðíîì ïîäìíîãîîáðàçèè, à, èìåííî, íà îòðåçêå[ex− , xe+ ]y = 0.