Диссертация (1136178), страница 53
Текст из файла (страница 53)
È. Ìàðè÷åâ. Ì. : Íàóêà, 1983. ñ. 752.79.Ïðóäíèêîâ, À. Ï., Áðû÷êîâ, Þ. À., Ìàðè÷åâ, Î. È. Èíòåãðàëûè ðÿäû. Ýëåìåíòàðíûå ôóíêöèè / À. Ï. Ïðóäíèêîâ, Þ. À.Áðû÷êîâ, Î. È. Ìàðè÷åâ. Ì. : Íàóêà, 1981. ñ. 800.80.Ðàñïðîñòðàíåíèå ãàóññîâûõ âîëíîâûõ ïàêåòîâ â êâàíòîâûõòîíêèõ ïåðèîäè÷åñêèõ âîëíîâîäàõ ñ íåëîêàëüíîé íåëèíåéíîñòüþ / É. Áðþíèíã [è äð.] // Òåîðåòè÷åñêàÿ è ìàòåìàòè÷åñêàÿôèçèêà. 2008. ò. 155, 2. ñ. 215235.81.Ñåãå, Ã. Îðòîãîíàëüíûå ìíîãî÷ëåíû / Ã. Ñåãå. Ì. : Ôèçìàòëèò, 1962. ñ.
500.45482.Ñèìåíîã, È. Â. Îá àñèìïòîòèêå ðåøåíèÿ ñòàöèîíàðíîãî íåëèíåéíîãî óðàâíåíèÿ Õàðòðè / È. Â. Ñèìåíîã // Òåîðåòè÷åñêàÿè ìàòåìàòè÷åñêàÿ ôèçèêà. 1977. ò. 30, 3. ñ. 408414.83.Ñëàâÿíîâ, Ñ. Þ., Ëàé, Â. Ñïåöèàëüíûå ôóíêöèè: Åäèíàÿ òåîðèÿ, îñíîâàííàÿ íà àíàëèçå îñîáåííîñòåé / Ñ. Þ. Ñëàâÿíîâ,Â. Ëàé. ÑÏá. : Íåâñêèé Äèàëåêò, 2002. ñ.
312.84.Ñîëîâüåâ, Å. À. Àòîì âîäîðîäà â ñëàáîì ìàãíèòíîì ïîëå /Å. À. Ñîëîâüåâ // Æóðíàë ýêñïåðèìåíòàëüíîé è òåîðåòè÷åñêîé ôèçèêè. 1982. ò. 82, 6. ñ. 17621771.85.Ñïðàâî÷íèê ïî ñïåöèàëüíûì ôóíêöèÿì ñ ôîðìóëàìè, ãðàôèêàìè è ìàòåìàòè÷åñêèìè òàáëèöàìè / ïîä ðåä. Ì. Àáðàìîâèö,È. Ñòèãàí. Ì. : Íàóêà, 1979. ñ. 832.86.Óèçåì, Ä.
Ëèíåéíûå è íåëèíåéíûå âîëíû / Ä. Óèçåì. Ì. :Ìèð, 1977. ñ. 624.87.Ôåäîðþê, Ì. Â. Àñèìïòîòèêà: èíòåãðàëû è ðÿäû / Ì. Â. Ôåäîðþê. Ì. : Íàóêà, 1987. ñ. 544.88.Ôåäîðþê, Ì. Â. Àñèìïòîòè÷åñêèå ìåòîäû äëÿ ëèíåéíûõ îáûêíîâåííûõ äèôôåðåíöèàëüíûõ óðàâíåíèé / Ì. Â. Ôåäîðþê. Ì. : Íàóêà, 1983. ñ. 352.89.Ôëþããå, Ç. Çàäà÷è ïî êâàíòîâîé ìåõàíèêå.
ò. 1 / Ç. Ôëþããå. Ì. : Ìèð, 1974. ñ. 341.90.Õàðòðè, Ä. Ð. Ðàñ÷åòû àòîìíûõ ñòðóêòóð / Ä. Ð. Õàðòðè. Ì. : ÈË, 1960. ñ. 271.91.×åðíûõ, Ñ. È. Êâàçèêëàññè÷åñêàÿ ÷àñòèöà â îäíîìåðíîì ñàìîñîãëàñîâàííîì ïîëå / Ñ. È. ×åðíûõ // Òåîðåòè÷åñêàÿ è ìàòåìàòè÷åñêàÿ ôèçèêà. 1982. ò. 52, 3. ñ. 491494.92.Øèôô, Ë.Êâàíòîâàÿ ìåõàíèêà / Ë. Øèôô. Ì. : ÈË,1959. ñ. 473.45593.Ëàâðåíòüåâ, Ì. À., Øàáàò, Á. Â. Ìåòîäû òåîðèè ôóíêöèé êîìïëåêñíîãî ïåðåìåííîãî / Ì.
À. Ëàâðåíòüåâ, Á. Â. Øàáàò. Ì. : Íàóêà, 1987. ñ. 688.94.Achmanov, S. A., Hocklov, R. V., Suchorukov, A. P. Self-fokusing, self-defokusing and self-modulation in nonlinear medium /S. A. Achmanov, R. V. Hocklov, A. P. Suchorukov // Laserhandbuch. Vol. 2. — Amsterdam : Holland-press, 1972. —Pp. 5–108.95.Avron, J. E., Herbst, I. W., Simon, B. Schrödinger operatorswith magnetic fields. III. Atoms in homogeneous magneticfield / J.
E. Avron, I. W. Herbst, B. Simon // Communicationin Mathematical Physics. — 1981. — Vol. 79, no. 4. — Pp. 529–572.96.Bader, P. Variational method for the Hartree equation of thehelium atom / P. Bader // Proceedings of the Royal Society ofEdinburgh. — 1978. — Vol. A82, no. 1–2. — Pp. 27–39.97.Batt, J. Recent development in the mathematical investigationof the initial value problem of stellar dynamics and plasmaphysics / J. Batt // Annals of Nuclear Energy. — 1980. —Vol. 7, no. 4–5.
— Pp. 213–217.98.Batt, J., Faltenbacher, W., Horst, E. Sationary spherically symmetric models in stellar dinamics / J. Batt, W. Faltenbacher,E. Horst // Archive for Rational Mechanics and Analysis. —1986. — Vol. 93, no. 2. — Pp. 159–183.99.Belov, V.
V., Oliv´e, V. M., Volkova, J. L. The Zeeman effect forthe ’anistropic hydrogen atom’ in the complex WKB approximation: I. Quantization of closed orbits for the Pauli operatorwith spin-orbit interaction / V. V. Belov, V. M. Oliv´e, J. L.Volkova // Journal of physics A: Mathematical and general. —1995. — Vol.
28. — Pp. 5799–5810.456100.Belov, V. V., Volkova, J. L. Investigation of the Zeeman effect inquasiclassical trajectory-coherent approximation / V. V. Belov,J. L. Volkova. — Tomsk : Tomsk Scientific Centre, AS USSR,Siberian Division, 1991. — P. 29. — (Preprint . 35).101.Bongers, A. Existenzaussagen fur die Choquard–Gleichung: Einnichtlineares Eigen wertproblem der plasma – physik / A.
Bongers // Zeitschrift fur angewandte mathematik mechanik. —1980. — Vol. 60, no. 7. — Pp. 240–242.102.Bonnor, W. B. Equilibrium of chardged dust in general relativity / W. B. Bonnor // General Relativity and Gravitation. —1980. — Vol. 12, no. 6. — Pp. 453–465.103.Bove, A., Da Prato, G., Fano, G. An existense proof for theHartree-Fock time dependent problem with bounded two-bodyintraction / A. Bove, G. Da Prato, G. Fano // Communicationin Mathematical Physics. — 1974.
— Vol. 37. — Pp. 183–192.104.Braun, W., Hepp, K. The Vlasov dynamics and its fluctuationsin the 1/N -limit of interacting classical particals / W. Braun, K.Hepp // Communication in Mathematical Physics. — 1977. —Vol. 56, no. 2. — Pp. 101–113.105.Chadam, J. M., Glassey, R. T. Global existence of solutionsto the Cauchy problem for time-dependent Hartree equation /J. M. Chadam, R. T.
Glassey // Journal of Mathematical Physics. — 1975. — Vol. 16. — Pp. 1122–1130.106.Choquet-Bruhat, Y. Solutions globales des equations de Maxwell–Dirac–Klein–Gordon ( masses nulles ) / Y. Choquet-Bruhat // Comptes rendus hebdomadaires des seances de l’academie des sciences, Ser. 1. — 1981. — Vol.
292, no. 2. —Pp. 153–158.107.Chudnovsky, D. V. Infinite component two-dimensional completely integrable systems of KdV type / D. V. Chudnovsky //457Lecture Notes in Mathematics. — 1982. — Vol. 925. — Pp. 71–84.108.Davies, E. B. Some time-dependent Hartree equations / E. B.Davies // Annales de l’Institut Henri Poincare. — 1979. —Vol.
A31, no. 4. — Pp. 319–337.109.Delande, D., Gay, J. C. Group theory applied to the hydrogenatom in a strong magnetic field. Derivation of the effectivediamagnetic Hamiltonian / D. Delande, J. C. Gay // Journal ofphysics B: Atomic molecular and optical physics. — 1984. —Vol. 17. — Pp. L335–L340.110.Delgado, V. Global solutions of the Cauchy problem for theclassical coupled Maxwell-Dirak and other nonlinear Dirac equations in one space dimension / V. Delgado // Proceedings of theAmerican Mathematical Society.
— 1978. — Vol. 69, no. 2. —Pp. 289–296.111.Dias, J. D., Figueira, M. Décroissance a l’infini de la solution d’une equation non lineaire du type Schrödinger-Hartree /J. D. Dias, M. Figueira // Comptes rendus hebdomadaires desseances de l’academie des sciences. — 1980. — Vol. AB290,no. 19. — A889–A892.112.Dirac, P. A. M. Complex variables in quantum mechanics /P. A. M.
Dirac // Proceedings of the Royal Society of London,Ser. A. — 1937. — Vol. 160. — Pp. 48–59.113.Dirac, P. A. M. Quantum electrodynamics / P. A. M. Dirac //Communications of the Dublin Institute for Advanced Studies,Ser. A. — 1943. — Vol. 1.
— Pp. 1–36.114.Efinger, H. J., Grosse, H. On bound state solutions for certainnonlinear Schrödinger equations / H. J. Efinger, H. Grosse //Letters in Mathematical Physics. — 1984. — Vol. 8, no. 2. —Pp. 91–95.458115.Fonte, G., Mignani, R., Schiffrer, G. Solution of the HartreeFock equations / G. Fonte, R. Mignani, G. Schiffrer // Communication in Mathematical Physics. — 1973. — Vol. 33. —Pp. 293–304.116.Friedrich, H., Wintgen, D. The hydrogen atom in a uniformmagnetic field — an example of chaos / H.
Friedrich, D. Wintgen // Physics Reports. — 1989. — Vol. 183, no. 2. — Pp. 39–79.117.Fukuda, I., Tsutsumi, M. On coupled Klein-Gordon-Schrödinger equations / I. Fukuda, M. Tsutsumi // Journal of Mathematical Analysis and Applications. — 1978. — Vol. 66, no.2. — Pp. 358–378.118.Gegenberg, J. D., Das, A. J. An exact stationary solution ofthe combined Einstein-Maxwell-Klein-Gordon equations / J. D.Gegenberg, A. J.
Das // Journal of Mathematical Physics. —1981. — Vol. 22, no. 8. — Pp. 1736–1739.119.Ginibre, J., Velo, G. On a class of non linear Schrödinger equations with non local interaction / J. Ginibre, G. Velo // Mathematische Zeitschrift. — 1980. — Vol. 170, no. 2. — Pp.
109–136.120.Glassey, R. T. Asymptotic behavior of solutions to certain nonlinear Schrödinger-Hartree equations / R. T. Glassey // Communication in Mathematical Physics. — 1977. — Vol. 53, no.1. — Pp. 9–18.121.Gogny, D., Lions, P. L. Hartry-Fock theory in nuclear physics /D. Gogny, P. L. Lions // Modelisation mathematique et analysenumerique. — 1986. — Vol. 20, no. 4. — Pp. 571–637.122.Gross, E. P. Hydrodynamics of Superfluid condensate / E. P.Gross // Journal of Mathematical Physics.
— 1963. — Vol. 4,no. 2. — Pp. 195–207.459123.Gross, E. P. Structure of a quantized vortex in boson systems /E. P. Gross // Nuovo Cimento. — 1961. — Vol. 20, no. 3. —Pp. 454–477.124.Gustafson, K., Sather, D. A branching analysis of the Hartreeequation / K. Gustafson, D. Sather // Rendiconti di Matematica. — 1971. — Vol. 4. — Pp. 723–734.125.Hagedorn, G. A. Semiclassical quantum mechanics. I. The ~ →0 limit for coherent states / G. A.
Hagedorn // Communicationin Mathematical Physics. — 1980. — Vol. 71, no. 1. — Pp. 77–93.126.Hartree, D. R. The wave mechanics of an atom with a nonCoulomb central field. Part I. Theory and methods / D. R.Hartree // Proceedings of the Cambridge Philosophical Society. — 1928. — Vol. 24. — Pp. 89–110.127.Hartree, D. R.
The wave mechanics of an atom with a nonCoulomb central field. Part II. Some results and discussion /D. R. Hartree // Proceedings of the Cambridge PhilosophicalSociety. — 1928. — Vol. 24. — Pp. 111–132.128.Hartree, D. R. The wave mechanics of an atom with a nonCoulomb central field. Part III. Term values and intensitiesin series an optical spectra / D. R. Hartree // Proceedings ofthe Cambridge Philosophical Society.