Главная » Просмотр файлов » Е.Е. Тыртышников - Матричный анализ и линейная алгебра

Е.Е. Тыртышников - Матричный анализ и линейная алгебра (1112313), страница 18

Файл №1112313 Е.Е. Тыртышников - Матричный анализ и линейная алгебра (Е.Е. Тыртышников - Матричный анализ и линейная алгебра) 18 страницаЕ.Е. Тыртышников - Матричный анализ и линейная алгебра (1112313) страница 182019-04-25СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 18)

 ñèëó äèñòðèáóòèâíîñòè, 0 · a = (0 + 0) · a = (0 · a) + (0 · a). Äàëåå,ïóñòü b = −(0 · a) (ïðîòèâîïîëîæíûé âåêòîð ê âåêòîðó 0 · a). Òîãäà 0 = b + (0 · a) =(b + (0 · a)) + (0 · a) ⇒ 0 = 0 · a. 2Óòâåðæäåíèå 2.Äîêàçàòåëüñòâî.Óòâåðæäåíèå 3.Äîêàçàòåëüñòâî.α · 0 = 0 ∀ α ∈ R.α · 0 = α(0 + 0) = α · 0 + α · 0 ⇒ α · 0 = 0.2(−1) · a = −a ∀ a ∈ V . ñèëó óòâåðæäåíèÿ 1 è äèñòðèáóòèâíîñòè, 0 = 0·a = (1+(−1))·a =(1 · a) + ((−1) · a) = a + ((−1) · a).

2Óòâåðæäåíèå 4. Åñëè α · a = 0, òî ëèáî α = 0, ëèáî a = 0.Äîêàçàòåëüñòâî. Ïóñòü α 6= 0. Òîãäà2 111α ·a=(α · a) =· 0 = 0.a=1·a=ααα2Êàê è ðàíüøå, äëÿ ëþáûõ ÷èñåë α1 , . . . , αn âåêòîð w âèäàw = α1 a1 + . . . + αn aníàçûâàåòñÿ ëèíåéíîé êîìáèíàöèåé âåêòîðîâ a1 , . . . an , à ìíîæåñòâî âñåõ ëèíåéíûõ êîìáèíàöèé ñî âñåìè âîçìîæíûìè çíà÷åíèÿìè êîýôôèöèåíòîâ α1 , . . . , αn íàçûâàåòñÿ ëèíåéíîé îáîëî÷êîé âåêòîðîâ a1 , . .

. , an è îáîçíà÷àåòñÿ L(a1 , . . . , an ). äàëüíåéøåì ÷èñëî 0 è íóëåâîé âåêòîð 0 áóäóò îáîçíà÷àòüñÿ îäíèì è òåì æåñèìâîëîì 0.11.2Ïðèìåðû áåñêîíå÷íîìåðíûõ ëèíåéíûõ ïðîñòðàíñòâ(1) Ìíîæåñòâî ôóíêöèé ñ âåùåñòâåííûìè çíà÷åíèÿìè íà îòðåçêå [0, 1].Ñóììà f + g ôóíêöèé f è g îïðåäåëÿåòñÿ êàê ôóíêöèÿ ñî çíà÷åíèÿìè (f + g)(x) =f (x) + g(x). Ïðè óìíîæåíèè ôóíêöèè íà ÷èñëî ïîëó÷àåòñÿ ôóíêèöÿ αf , îïðåäåëÿåìàÿ ïðàâèëîì (αf )(x) = αf (x). Ðîëü íóëåâîãî âåêòîðà âûïîëíÿåò ôóíêöèÿ,òîæäåñòâåííî ðàâíàÿ íóëþ.1 Äàííîå ñâîéñòâî ðàâíîñèëüíî òîìó, ÷òî êàæäûé âåêòîðíåêîòîðîãî âåêòîðàa ìîæíî ïðåäñòàâèòü â âèäå a = αb äëÿb è íåêîòîðîãî ÷èñëà α.

 ñàìîì äåëå, åñëè ýòî ñâîéñòâî âûïîëíåíî, òî ìîæíî âçÿòüb = a è α = 1. Ñ äðóãîé ñòîðîíû, ïóñòü âûïîëíåíèå ýòîãî ñâîéñòâà íå ïðåäïîëàãàåòñÿ, íî èçâåñòíî, ÷òîa = αb. Òîãäà, èñïîëüçóÿ àêñèîìó α(β a) = (αβ) a, ïîëó÷àåì 1 · (αb) = (1 · α) · b = αb ⇒ 1 · a = a.2 Óòâåðæäåíèå íåëüçÿ ïîëó÷èòü áåç àêñèîìû 1 · a = a.  ñàìîì äåëå, âîçüìåì ëþáóþ àáåëåâó ãðóïïóV ñ íóëåâûì ýëåìåíòîì 0 è îïðåäåëèì óìíîæåíèå íà ÷èñëî ïðàâèëîì αa = 0 äëÿ âñåõ ÷èñåë α èâåêòîðîâ a ∈ V . Ïðè ýòîì áóäóò âûïîëíåíû âñå àêñèîìû ëèíåéíîãî ïðîñòðàíñòâà, êðîìå äàííîé.Å. Å. Òûðòûøíèêîâ75(2) Ìíîæåñòâî áåñêîíå÷íûõ ïîñëåäîâàòåëüíîñòåé {xk }∞k=1 .Ñóììà ïîñëåäîâàòåëüíîñòåé {xk } è {yk } îïðåäåëÿåòñÿ êàê ïîñëåäîâàòåëüíîñòü{zk } ñ ÷ëåíàìè zk = xk + yk .

Ïðîèçâåäåíèå ïîñëåäîâàòåëüíîñòè {xk } íà ÷èñëîα îïðåäåëÿåòñÿ êàê ïîñëåäîâàòåëüíîñòü {zk } ñ ÷ëåíàìè zk = αxk . Ðîëü íóëåâîãîâåêòîðà âûïîëíÿåò ïîñëåäîâàòåëüíîñòü, â êîòîðîé âñå ýëåìåíòû ðàâíû íóëþ.(3) Ìíîæåñòâî ñõîäÿùèõñÿ ïîñëåäîâàòåëüíîñòåé {xk }∞k=1 .Îïåðàöèè îïðåäåëÿþòñÿ òàê æå, êàê è â ñëó÷àå ïðîèçâîëüíûõ áåñêîíå÷íûõ ïîñëåäîâàòåëüíîñòåé. Íåîáõîäèìî ëèøü çàìåòèòü, ÷òî ñóììà ñõîäÿùèõñÿ ïîñëåäîâàòåëüíîñòåé îñòàíåòñÿ ñõîäÿùåéñÿ ïîñëåäîâàòåëüíîñòüþ, à óìíîæåíèå ñõîäÿùåéñÿïîñëåäîâàòåëüíîñòè íà ÷èñëî òàêæå äàåò ñõîäÿùóþñÿ ïîñëåäîâàòåëüíîñòü.Ïðèìåðû (1)-(3) çàìå÷àòåëüíû òåì, ÷òî ñîîòâåòñòâóþùèå ëèíåéíûå ïðîñòðàíñòâà íå ÿâëÿþòñÿ ëèíåéíîé îáîëî÷êîé êàêîãî-òî êîíå÷íîãî ÷èñëà ñâîèõ âåêòîðîâ.

Òàêèåëèíåéíûå ïðîñòðàíñòâà íàçûâàþòñÿ áåñêîíå÷íîìåðíûìè.Äîêàæåì, íàïðèìåð, áåñêîíå÷íîìåðíîñòü ïðîñòðàíñòâà ôóíêöèé. Ïðåäïîëîæèì îòïðîòèâíîãî, ÷òî îíî ñîâïàäàåò ñ ëèíåéíîé îáîëî÷êîé êàêèõ-òî ôóíêöèé f1 , . . . , fn . Òîãäàëþáàÿ ôóíêöèÿ f èìååò âèäf (x) = α1 f1 (x) + . . . + αn fn (x).(∗)Âûáåðåì n ïîïàðíî ðàçëè÷íûõ òî÷åê x1 , . . . , xn ∈ [0, 1] è äëÿ ïðîèçâîëüíî âûáðàííîéôóíêöèè f ðàññìîòðèì ñèñòåìó óðàâíåíèéα1 (f ) f1 (x1 ) + . .

. + αn (f ) fn (x1 ) = f (x1 ),............α1 (f ) f1 (xn ) + . . . + αn (f ) fn (xn ) = f (xn ).Ýòî åñòü ñèñòåìà ëèíåéíûõ àëãåáðàè÷åñêèõ óðàâíåíèé îòíîñèòåëüíî α1 (f ), . . . , αn (f ).Åñëè ìàòðèöà êîýôôèöèåíòîâ äàííîé ñèñòåìû íåîáðàòèìà, òî çàâåäîìî ðåøåíèå ñóùåñòâóåò íå äëÿ ëþáîé ïðàâîé ÷àñòè. Òîãäà ðàâåíñòâî (∗) íå âûïîëíÿåòñÿ õîòÿ áû äëÿîäíîé ôóíêöèè f . Ñëåäîâàòåëüíî, ìàòðèöà êîýôôèöèåíòîâ äîëæíà áûòü îáðàòèìîé.Ïîýòîìó äëÿ çàäàííîé ôóíêöèè f êîýôôèöèåíòû α1 (f ), . . .

, αn (f ) îïðåäåëåíû îäíîçíà÷íî.Ïóñòü òåïåðü òî÷êà x∗ ∈ [0, 1] íå ñîâïàäàåò íè ñ îäíîé èç òî÷åê x1 , . . . , xn . Çàâåäîìîñóùåñòâóåò ôóíêöèÿ g òàêàÿ, ÷òî g(xi ) = f (xi ) ïðè i = 1, . . . , n, íî g(x∗ ) 6= f (x∗ ).ßñíî, ÷òî αi (f ) = αi (g) ïðè i = 1, . . . , n, îòêóäà f = g , ÷åãî áûòü íå ìîæåò, ïîñêîëüêóf (x∗ ) 6= g(x∗ ). 2Çàäà÷à.ñòàòî÷íî, ÷òîáû äëÿ íåêîòîðûõ ÷èñåë11.3f1 (x), . .

. , fn (x) íåîáõîäèìî è äînxn ìàòðèöà [fi (xj )]ij=1 áûëà îáðàòèìîé.Äîêàçàòü, ÷òî äëÿ ëèíåéíîé íåçàâèñèìîñòè ôóíêöèéx1 , . . . ,Ïðèìåðû êîíå÷íîìåðíûõ ëèíåéíûõ ïðîñòðàíñòâËèíåéíûå ïðîñòðàíñòâà, ïðåäñòàâëÿþùèå ñîáîé ëèíåéíóþ îáîëî÷êó íåêîòîðîãî êîíå÷íîãî ÷èñëà ñâîèõ âåêòîðîâ, íàçûâàþòñÿ êîíå÷íîìåðíûìè.(1) Ìíîæåñòâî ìíîãî÷ëåíîâ ïîðÿäêà n.76Ëåêöèÿ 11Ìíîãî÷ëåíîì (ïîëèíîìîì) îò x ïîðÿäêà n íàçûâàåòñÿ âûðàæåíèå âèäàf (x) = an−1 xn−1 + an−2 xn−2 + . . . + a1 x + a0 .Åñëè ak 6= 0 è ak+1 = .

. . = an−1 = 0, òî k íàçûâàåòñÿ ñòåïåíüþ ìíîãî÷ëåíà f (x).Âûðàæåíèÿ âèäà axi íàçûâàþòñÿ îäíî÷ëåíàìè, èëè ìîíîìàìè.Áóäåì ðàññìàòðèâàòü f (x) êàê ôóíêöèþ îò x. Òîãäà ñóììà ìíîãî÷ëåíîâ è óìíîæåíèå ìíîãî÷ëåíà íà ÷èñëî îïðåäåëÿþòñÿ òàê æå, êàê â ñëó÷àå ôóíêöèé îáùåãî âèäà.Ïðè ýòîì ÿñíî, ÷òî ðåçóëüòàòû ýòèõ îïåðàöèé îñòàþòñÿ ìíîãî÷ëåíàìè. Î÷åâèäíî,ëèíåéíîå ïðîñòðàíñòâî âñåõ ìíîãî÷ëåíîâ ïîðÿäêà n ÿâëÿåòñÿ ëèíåéíîé îáîëî÷êîéîäíî÷ëåíîâ âèäàxn−1 , xn−2 , . . .

, x1 , x0 ≡ 1.(2) Ìíîæåñòâî m × n-ìàòðèö ñ ôèêñèðîâàííûìè ðàçìåðàìè m è n. äàííîì ñëó÷àå ñëîæåíèå âåêòîðîâ îïðåäåëÿåòñÿ êàê ñëîæåíèå ìàòðèö, à óìíîæåíèå âåêòîðà íà ÷èñëî êàê óìíîæåíèå ìàòðèöû íà ÷èñëî.Îáîçíà÷èì ÷åðåç E kl = [(E kl )ij ] ìàòðèöó ðàçìåðîâ m × n ñ ýëåìåíòàìè âèäà1, i = k, j = l,kl(E )ij =0,èíà÷å.Òàêèõ ìàòðèö ðîâíî mn è î÷åâèäíî, ÷òî âñå ïðîñòðàíñòâî m × n-ìàòðèö ÿâëÿåòñÿèõ ëèíåéíîé îáîëî÷êîé.(3) Ìíîæåñòâî âñåõ ðåøåíèé îäíîðîäíîé ñèñòåìû ëèíåéíûõ àëãåáðàè÷åñêèõ óðàâíåíèé Ax = b.Åñëè ðàíã m×n-ìàòðèöû A ðàâåí r, òî ôóíäàìåíòàëüíàÿ ñèñòåìà ðåøåíèé äàííîéîäíîðîäíîé ñèñòåìû ñîäåðæèò n − r âåêòîðîâ, à âñå ìíîæåñòâî ðåøåíèé ñîâïàäàåòñ èõ ëèíåéíîé îáîëî÷êîé.Äàííîå ëèíåéíîå ïðîñòðàíñòâî íàçûâàåòñÿ íóëü-ïðîñòðàíñòâîì, èëè ÿäðîì ìàòðèöû A.

Îáîçíà÷åíèå: ker A (â íåêîòîðûõ êíèãàõ null A).(4) Ìíîæåñòâî âñåõ ñòîëáöîâ âèäà y = Ax (äëÿ çàäàííîé ìàòðèöû A).Ýòî õîðîøî çíàêîìîå íàì ìíîæåñòâî, ñîâïàäàþùåå ñ ëèíåéíîé îáîëî÷êîé ñòîëáöîâ ìàòðèöû A. Îíî íàçûâàåòñÿ îáðàçîì ìàòðèöû A. Îáîçíà÷åíèå: imA.11.4Áàçèñ è ðàçìåðíîñòüÏóñòü V êîíå÷íîìåðíîå ïðîñòðàíñòâî. Ïî îïðåäåëåíèþ, îíî ÿâëÿåòñÿ ëèíåéíîé îáîëî÷êîé êîíå÷íîãî ÷èñëà ñâîèõ âåêòîðîâ:V = L(a1 , . . . , an ).Ïîíÿòèÿ ëèíåéíî çàâèñèìîé è ëèíåéíî íåçàâèñèìîé ñèñòåì âåêòîðîâ â àáñòðàêòíîìñëó÷àå íè÷åì íå îòëè÷àþòñÿ îò òåõ æå ïîíÿòèé â ñëó÷àå ìàòðèö-ñòîëáöîâ. Òî æå ñïðàâåäëèâî â îòíîøåíèè áàçèñà è ðàçìåðíîñòè:• V ìîæíî ïðåäñòàâèòü êàê ëèíåéíóþ îáîëî÷êó íåêîòîðîé ëèíåéíî íåçàâèñèìîéïîäñèñòåìû âåêòîðîâ a1 , . .

. , an ;Å. Å. Òûðòûøíèêîâ77• áàçèñ â ïðîñòðàíñòâå V îïðåäåëÿåòñÿ êàê ëþáàÿ ëèíåéíî íåçàâèñèìàÿ ñèñòåìàâåêòîðîâ, äëÿ êîòîðîé V ÿâëÿåòñÿ ëèíåéíîé îáîëî÷êîé; ëþáûå äâà áàçèñà â Vñîäåðæàò îäèíàêîâîå ÷èñëî âåêòîðîâ; ÷èñëî âåêòîðîâ â áàçèñå íàçûâàåòñÿ ðàçìåðíîñòüþ ïðîñòðàíñòâà V è îáîçíà÷àåòñÿ dim V ;• ëþáóþ ëèíåéíî íåçàâèñèìóþ ñèñòåìó âåêòîðîâ èç V ìîæíî äîñòðîèòü äî áàçèñàV ; áîëåå òîãî, ýòî ìîæíî ñäåëàòü ñ ïîìîùüþ ÷àñòè âåêòîðîâ a1 , .

. . , an .Äîêàçàòåëüñòâà ýòèõ ïðåäëîæåíèé ïîâòîðÿþò äîêàçàòåëüñòâà èç Ëåêöèè 3 äëÿ ÷àñòíîãî ñëó÷àÿ ëèíåéíûõ ïðîñòðàíñòâ êîãäà ïîä âåêòîðàìè ïîäðàçóìåâàëèñü ìàòðèöûñòîëáöû.11.5Ïîäïðîñòðàíñòâà ëèíåéíîãî ïðîñòðàíñòâàÍåïóñòîå ìíîæåñòâî W ⊂ V íàçûâàåòñÿ ïîäïðîñòðàíñòâîì ëèíåéíîãî ïðîñòðàíñòâà V ,åñëè îíî ñàìî ÿâëÿåòñÿ ëèíåéíûì ïðîñòðàíñòâîì îòíîñèòåëüíî îïåðàöèé, äåéñòâóþùèõâ V . ßñíî, ÷òî äëÿ òîãî ÷òîáû W áûëî ïîäïðîñòðàíñòâîì, íåîáõîäèìî è äîñòàòî÷íî,÷òîáû äëÿ ëþáûõ âåêòîðîâ a, b ∈ W è ëþáîãî ÷èñëà α èìåëè ìåñòî âêëþ÷åíèÿ a+b ∈ Wè αa ∈ W .Åñëè âåêòîðû a1 , .

. . , an ïðèíàäëåæàò ïîäïðîñòðàíñòâó W , òî L(a1 , . . . , an ) ⊂ W.Ðàññìîòðèì ìíîæåñòâî V âñåõ ñâîáîäíûõ âåêòîðîâ íà ïëîñêîñòè ñ ñèñòåìîé êîîðäèíàò ñ íà÷àëîì â òî÷êå O. Ïîñêîëüêó êàæäûé ñâîáîäíûé âåêòîð ïîðîæäàåòñÿîäíèì è òîëüêî îäíèì ðàäèóñ-âåêòîðîì, ëþáîå ïîäìíîæåñòâî ñâîáîäíûõ âåêòîðîâ ìîæÏÐÈÌÅÐ.−→íî îòîæäåñòâëÿòü ñ ïîäìíîæåñòâîì ðàäèóñ-âåêòîðîâ OA èëè èõ êîíöîâ òî÷åê A.Ìíîæåñòâî V , î÷åâèäíî, ÿâëÿåòñÿ ëèíåéíûì ïðîñòðàíñòâîì. Ëþáàÿ ïðÿìàÿ, ïðîõîäÿùàÿ ÷åðåç íà÷àëî êîîðäèíàò, ÿâëÿåòñÿ ïîäïðîñòðàíñòâîì â V .  òî æå âðåìÿ, åñëè l ïðÿìàÿ, íå ïðîõîäÿùàÿ ÷åðåç íà÷àëî êîîðäèíàò, òî îíà ïîäïðîñòðàíñòâîì íå ÿâëÿåòñÿ:−→−→−→ïóñòü A, B ∈ l è OC = OA + OB ; ÿñíî, ÷òî C ∈/ l.Çàäà÷à.Äîêàæèòå, ÷òî ëèíåéíîå ïðîñòðàíñòâîRníåëüçÿ ïðåäñòàâèòü â âèäå îáúåäèíåíèÿ êî-íå÷íîãî ÷èñëà ìíîæåñòâ, êàæäîå èç êîòîðûõ íå ñîâïàäàåò ñ11.6Rnè ÿâëÿåòñÿ åãî ïîäïðîñòðàíñòâîì.Ñóììà è ïåðåñå÷åíèå ïîäïðîñòðàíñòâÏóñòü P è Q ïîäïðîñòðàíñòâà ëèíåéíîãî ïðîñòðàíñòâà V .

Ïîä ñóììîé P + Q ïîíèìàåòñÿ ìíîæåñòâî âñåõ âåêòîðîâ âèäà w = p + q , ãäå p ∈ P , q ∈ Q. Ïîä ïåðåñå÷åíèåìP ∩ Q ïîíèìàåòñÿ îáû÷íîå ïåðåñå÷åíèå ìíîæåñòâ.Óòâåðæäåíèå. Ìíîæåñòâà P + Q è P ∩ Q ÿâëÿþòñÿ ïîäïðîñòðàíñòâàìè â V .Äîêàçàòåëüñòâî.(1) Ðàññìîòðèì ïðîèçâîëüíóþ ëèíåéíóþ êîìáèíàöèþ âåêòîðîâ w1 , w2 ∈ P + Q. Ïîîïðåäåëåíèþ ìíîæåñòâà P + Q, w1 = p1 + q1 è w2 = p1 + q2 , ãäå p1 , p2 ∈ P è q1 , q2 ∈ Q.Òîãäàα1 w1 + α2 w2 = (α1 p1 + α2 p2 ) + (α1 q1 + α2 q2 ) ∈ P + Q,ïîñêîëüêó âåêòîð â ïåðâîé ñêîáêå ïðèíàäëåæèò P , à âåêòîð âòîðîé ñêîáêè ïðèíàäëåæèòQ (P è Q ïîäïðîñòðàíñòâà, ïîýòîìó îíè ñîäåðæàò âñå ëèíåéíûå êîìáèíàöèè ñâîèõâåêòîðîâ).(2) Àíàëîãè÷íî, ðàññìîòðèì ëèíåéíóþ êîìáèíàöèþ âåêòîðîâ w1 , w2 ∈ P ∩ Q:αw1 + α2 w2 ∈ Pè îäíîâðåìåíííîα1 w1 + α2 w2 ∈ Q78Ëåêöèÿ 11⇒αw1 + α2 w2 ∈ P ∩ Q.

2Çàìåòèì, ÷òî ëþáûå äâà ïîäïðîñòðàíñòâà èìåþò íåïóñòîå ïåðåñå÷åíèå: êàæäîå èçíèõ ñîäåðæèò, ïî êðàéíåé ìåðå, íóëåâîé âåêòîð.Òåîðåìà Ãðàññìàíà. Ïóñòü W1 è W2 êîíå÷íîìåðíûå ïîäïðîñòðàíñòâà ëèíåéíîãîïðîñòðàíñòâà V . Òîãäàdim(W1 + W2 ) = dim W1 + dim W2 − dim(W1 ∩ W2 ).Äîêàçàòåëüñòâî. Ðàññìîòðèì áàçèñ g1 , . . .

Характеристики

Тип файла
PDF-файл
Размер
1,77 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6553
Авторов
на СтудИзбе
299
Средний доход
с одного платного файла
Обучение Подробнее