Главная » Просмотр файлов » Е.Е. Тыртышников - Матричный анализ и линейная алгебра

Е.Е. Тыртышников - Матричный анализ и линейная алгебра (1112313), страница 14

Файл №1112313 Е.Е. Тыртышников - Матричный анализ и линейная алгебра (Е.Е. Тыртышников - Матричный анализ и линейная алгебра) 14 страницаЕ.Е. Тыртышников - Матричный анализ и линейная алгебра (1112313) страница 142019-04-25СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 14)

. + 12 =1 3n + O(n2 )3óìíîæåíèé è ñòîëüêî æå âû÷èòàíèé; ÷åðåç O(n2 ) îáîçíà÷åí ìíîãî÷ëåí îò n ñòåïåíè 2.×òîáû íàéòè ðåøåíèå ñèñòåìû Ax = b, òðåáóåòñÿ âûïîëíèòü åùå äâà äåéñòâèÿ:• âû÷èñëèòü âåêòîð Zn−1 . . . Z1 b;• íàéòè ðåøåíèå ñèñòåìû ñ âåðõíåé òðåóãîëüíîé ìàòðèöåé U .Êàæäîå èç ýòèõ äåéñòâèé òðåáóåò ëèøü O(n2 ) àðèôìåòè÷åñêèõ îïåðàöèé íà ïîðÿäîêìåíüøå, ÷åì ïðèâåäåíèå ê âåðõíåìó òðåóãîëüíîìó âèäó.Çàäà÷à.Íåâûðîæäåííàÿ ìàòðèöà è îáðàòíàÿ ê íåé ðàçáèòû íà áëîêè îäèíàêîâûõ ðàçìåðîâ:A11A=A21A12,A22A−1B11=B21B12.B2254Ëåêöèÿ 8Äîêàçàòü, ÷òî áëîêA11íåâûðîæäåí òîãäà è òîëüêî òîãäà, êîãäà íåâûðîæäåí áëîêB22 .ÄÎÏÎËÍÈÒÅËÜÍÀß ×ÀÑÒÜ8.8LU -ðàçëîæåíèå è ñòðîãî ðåãóëÿðíûå ìàòðèöûÄîïóñòèì, ÷òî íåâûðîæäåííàÿ ìàòðèöà A èìååò LU -ðàçëîæåíèå: A = LU .

Îáîçíà÷èì÷åðåç Ak , Lk , Uk ïîäìàòðèöû ïîðÿäêà k , ðàñïîëîæåííûå â ëåâîì âåðõíåì óãëó ìàòðèöA, L, U , ñîîòâåòñòâåííî, è ðàññìîòðèì ðàâåíñòâî áëî÷íûõ ìàòðèöAk PLk 0Uk WA≡=ekekek .Q AV L0 UÎòñþäà âûòåêàåò, ÷òîAk = Lk Uk ,k = 1, . . . , n.Î÷åâèäíî, ÷òî ìàòðèöû Lk è UK íåâûðîæäåííûå (êàê òðåóãîëüíûå ìàòðèöû ñ íåíóëåâîé äèàãîíàëüþ). Ïîýòîìó ïîäìàòðèöà Ak äîëæíà áûòü íåâûðîæäåííîé. Ìàòðèöà A, âêîòîðîé âñå ïîäìàòðèöû Ak íåâûðîæäåííûå, íàçûâàåòñÿ ñòðîãî ðåãóëÿðíîé.Òàêèì îáðàçîì, äëÿ ñóùåñòâîâàíèÿ LU -ðàçëîæåíèÿ íåâûðîæäåííîé ìàòðèöû Aíåîáõîäèìî, ÷òîáû îíà áûëà ñòðîãî ðåãóëÿðíîé.Ìîæíî äîêàçàòü, ÷òî ýòî óñëîâèå ÿâëÿåòñÿ òàêæå è äîñòàòî÷íûì.  ñàìîì äåëå,ïóñòü óæå ïîñòðîåíî LU -ðàçëîæåíèå äëÿ ïîäìàòðèöû Ak = Lk Uk .

Òîãäà Ak PL−10Uk Lk−1 Pkek − QA−1 P.=,W =A(#)ke−QA−1I0WQAkkÁëîê W íàçûâàåòñÿ äîïîëíåíèåì ïî Øóðó áëîêà Ak â ìàòðèöå A. Èç ðàâåíñòâà (#)è ñòðîãîé ðåãóëÿðíîñòè A ìîæíî âûâåñòè, ÷òî W ÿâëÿåòñÿ òàêæå ñòðîãî ðåãóëÿðíîéek Uek . Òîãäàìàòðèöåé. Ïðåäïîëîæèì, ÷òî äëÿ W óæå ïîñòðîåíî LU -ðàçëîæåíèå W = LïîëîæèìI 0Uk L−1Lk0k PL=U=.ek ,ek−QA−10 L0Uk Lk IÏîëó÷åííàÿ òàêèì îáðàçîì ìàòðèöà L âåðõíÿÿ òðåóãîëüíàÿ. Ðàâåíñòâî LU = A ïðîâåðÿåòñÿ ïðÿìûì âû÷èñëåíèåì.Çàäà÷à.ÏóñòüA íåâûðîæäåííàÿ ìàòðèöà ïîðÿäêànèA(I, J) åå íåâûðîæäåííàÿ ïîäìàòI = (i1 , . . . , ik ) è J = (j1 , .

. . , jk ),ðèöà íà ñòðîêàõ è ñòîëáöàõ, îïðåäåëåííûõ ñèñòåìàìè íîìåðîâñîîòâåòñòâåííî. Ïóñòük < n,àI0èJ0 äîïîëíèòåëüíûå ñèñòåìû íîìåðîâ. Äîêàçàòü, ÷òîdet A−1 (I 0 , J 0 ) = (−1)i1 +...+ik +j1 +...+jk det A(I, J)/ det A.Ëåêöèÿ 99.1Ìåòîä êîîðäèíàòÍàøèì èññëåäîâàíèÿì ëèíåéíîé çàâèñèìîñòè è ëèíåéíûõ îáîëî÷åê âåêòîðîâ (ìàòðèöñòîëáöîâ) ìîæíî äàòü íàãëÿäíóþ ãåîìåòðè÷åñêóþ èíòåðïðåòàöèþ. Êàê ñêîðî âûÿñíèòñÿ, îïðåäåëèòåëü òàêæå èìååò çàìå÷àòåëüíûé ãåîìåòðè÷åñêèé ñìûñë. Îñîáåííî âàæíîòî, ÷òî àëãåáðàèçàöèÿ ãåîìåòðè÷åñêèõ ïîíÿòèé äàåò ìîùíûé àëãåáðàè÷åñêèé èíñòðóìåíò äëÿ ðåøåíèÿ çàäà÷ ãåîìåòðèè.Ê îñíîâíûì îáúåêòàì ãåîìåòðèè îòíîñÿòñÿ òî÷êè, ïðÿìûå è ïëîñêîñòè â ãåîìåòðè÷åñêîì ïðîñòðàíñòâå. Åñëè A è B òî÷êè ïðÿìîé, òî ïóñòü [AB] îáîçíà÷àåò îòðåçîêïðÿìîé ìíîæåñòâî òî÷åê äàííîé ïðÿìîé, ðàñïîëîæåííûõ ìåæäó òî÷êàìè A è B ; |AB| äëèíà îòðåçêà [AB].Áóäåì îïèðàòüñÿ íà òî, ÷òî ìåæäó âåùåñòâåííûìè ÷èñëàìè è òî÷êàìè ïðÿìîé ñóùåñòâóåò âçàèìíî-îäíîçíà÷íîå ñîîòâåòñòâèå x ↔ P (x), êîòîðîå ïîëíîñòüþ îïðåäåëÿåòñÿçàäàíèåì äâóõ òî÷åê P (0), P (1) è îáëàäàåò ñëåäóþùèìè ñâîéñòâàìè:• åñëè x 6= 0 è òî÷êè P (x) è P (1) íàõîäÿòñÿ ïî îäíó ñòîðîíó îò òî÷êè P (0), òî x > 0;â ïðîòèâíîì ñëó÷àå x < 0;• |P (0)P (x)| = |x| |P (0)P (1)|.Ïðÿìóþ, äëÿ êîòîðîé óñòàíîâëåíî óêàçàííîå ñîîòâåòñòâèå, áóäåì íàçûâàòü ÷èñëîâîéîñüþ, à ÷èñëî x êîîðäèíàòîé òî÷êè P (x).Çàìåòèì, ÷òî ïðè âûáîðå ïðîèçâîëüíîãî âåùåñòâåííîãî ÷èñëà a ñîîòâåòñòâèå x ↔P (x + a) áóäåò òàêæå âçàèìíî-îäíîçíà÷íûì.

Ýòî ïîçâîëÿåò ïåðåíîñèòü òî÷êó P (0) âëþáóþ çàäàííóþ òî÷êó äàííîé ïðÿìîé.Ðàññìîòðèì ïðÿìûå l1 , l2 , l3 , ïðîõîäÿùèå ÷åðåç îáùóþ òî÷êó O è íå ëåæàùèå â îäíîéïëîñêîñòè. Ïóñòü êàæäàÿ èç ýòèõ ïðÿìûõ ÿâëÿåòñÿ ÷èñëîâîé îñüþ ñ ñîîòâåòñòâèÿìèx ↔ P1 (x),y ↔ P2 (y),z ↔ P3 (z),äàþùèìè îáùóþ òî÷êó P1 (0) = P2 (0) = P3 (0) = O. Ïóñòü (x, y, z) ñèñòåìà òðåõâåùåñòâåííûõ ÷èñåë, îïðåäåëÿþùèõ òî÷êè X = P1 (x), Y = P2 (y), Z = P3 (z) íà ïðÿìûõl1 , l2 , lz , ñîîòâåòñòâåííî.

Ðàññìîòðèì òðè ïëîñêîñòè:• π1 ïëîñêîñòü, ïðîõîäÿùàÿ ÷åðåç òî÷êó X ïàðàëëåëüíî ïðÿìûì l2 è l3 ;• π2 ïëîñêîñòü, ïðîõîäÿùàÿ ÷åðåç òî÷êó Y ïàðàëëåëüíî ïðÿìûì l1 è l3 ;• π3 ïëîñêîñòü, ïðîõîäÿùàÿ ÷åðåç òî÷êó Z ïàðàëëåëüíî ïðÿìûì l1 è l2 .5556Ëåêöèÿ 9Ëåãêî âèäåòü, ÷òî ïëîñêîñòè π1 , π2 , π3 ïåðåñåêàþòñÿ â îäíîé òî÷êå M = M (x, y, z).Òàêèì îáðàçîì óñòàíàâëèâàåòñÿ âçàèìíî-îäíîçíà÷íîå ñîîòâåòñòâèå(x, y, z) ↔ M (x, y, z).Òî÷êè X, Y, Z íàçûâàþòñÿ ïðîåêöèÿìè òî÷êè M íà ïðÿìûå l1 , l2 , l3 ïàðàëëåëüíî ïëîñêîñòÿì, ñîîòâåòñòâåííî, π1 , π2 , π3 .

×èñëà x, y, z íàçûâàþòñÿ êîîðäèíàòàìè òî÷êè M =M (x, y, z), à ñèñòåìà ÷èñëîâûõ îñåé l1 , l2 , l3 àôôèííîé ñèñòåìîé êîîðäèíàò. Òî÷êàO íàçûâàåòñÿ íà÷àëîì (èëè öåíòðîì) ñèñòåìû êîîðäèíàò.Ýïèòåò àôôèííàÿ ïî îòíîøåíèþ ê ñèñòåìå êîîðäèíàò îçíà÷àåò òîëüêî òî, ÷òî óãëûìåæäó îñÿìè ìîãóò íå áûòü ïðÿìûìè, à äëèíû îòðåçêîâ [OP1 (1)], [OP2 (1)], [OP3 (1)] íåîáÿçàòåëüíî ðàâíûå. Åñëè óãëû ìåæäó îñÿìè ïðÿìûå, à äëèíû óêàçàííûõ îòðåçêîâðàâíû 1, òî ñèñòåìà êîîðäèíàò íàçûâàåòñÿ äåêàðòîâîé.9.2Íàïðàâëåííûå îòðåçêèËþáóþ óïîðÿäî÷åííóþ ïàðó òî÷åê A, B áóäåì íàçûâàòü íàïðàâëåííûì îòðåçêîì ñ íà−→÷àëîì â òî÷êå A è êîíöîì â òî÷êå B .

Îáîçíà÷åíèå: AB .Åñëè èìååòñÿ ñèñòåìà êîîðäèíàò ñ íà÷àëîì â òî÷êå O, òî íàïðàâëåííûé îòðåçîê−→âèäà OA íàçûâàåòñÿ ðàäèóñ-âåêòîðîì òî÷êè A. Êîîðäèíàòû òî÷êè A íàçûâàþòñÿ òàêæå−→êîîðäèíàòàìè ðàäèóñ-âåêòîðà OA.Òî÷êà A 6= B ðàçáèâàåò ïðÿìóþ AB íà äâà ëó÷à: ëó÷ [AB), ñîñòîÿùèé èç òî÷åêäàííîé ïðÿìîé, ëåæàùèõ âìåñòå ñ B ïî îäíó ñòîðîíó îò A è äîïîëíèòåëüíûé ëó÷,ñîñòîÿùèé èç òî÷åê, ëåæàùèõ ïî äðóãóþ ñòîðîíó (òî÷êà A äëÿ äâóõ ëó÷åé ÿâëÿåòñÿ îáùåé). Äâà ëó÷à íà îäíîé ïðÿìîé íàçûâàþòñÿ îäèíàêîâî íàïðàâëåííûìè, åñëè èõïåðåñå÷åíèå ÿâëÿåòñÿ ëó÷îì (è ïðîòèâîïîëîæíî íàïðàâëåííûìè, åñëè èõ ïåðåñå÷åíèåÿâëÿåòñÿ îòðåçêîì).

Åñëè ïðÿìûå AB è CD íå ñîâïàäàþò, òî ëó÷è [AB) è [CD) íàçûâàþòñÿ îäèíàêîâî íàïðàâëåííûìè, åñëè ýòè ïðÿìûå ïàðàëëåëüíû è òî÷êè B è D ëåæàòïî îäíó ñòîðîíó îò ïðÿìîé AC .−→Ïðåäïîëîæèì, ÷òî A 6= B , ðàññìîòðèì îòðåçîê AB , è ïóñòü C ïðîèçâîëüíàÿòî÷êà. Ïðîâåäåì ÷åðåç C ïðÿìóþ, ïàðàëëåëüíóþ ïðÿìîé AB èëè ñîâïàäàþùóþ ñ íåéâ ñëó÷àå C ∈ AB . Íà ýòîé ïðÿìîé ìîæíî íàéòè ðîâíî äâå òî÷êè D1 è D2 òàêèå, ÷òî|CD1 | = |CD2 | = |AB|. Âûáåðåì èç íèõ òàêóþ òî÷êó D ∈ {D1 , D2 }, äëÿ êîòîðîé ëó÷è−→[AB) è [CD) îäèíàêîâî íàïðàâëåíû. Íàïðàâëåííûé îòðåçîê CD áóäåì ñ÷èòàòü ðàâíûì−→−→−→AB . (×àñòî ãîâîðÿò òàêæå, ÷òî CD ïîëó÷àåòñÿ èç AB ïàðàëëåëüíûì ïåðåíîñîì.)−→−→Äàííûì ïîñòðîåíèåì íå îõâà÷åí ñëó÷àé A = B .

Íàïðàâëåííûå îòðåçêè AA è CCáóäåì ñ÷èòàòü ðàâíûìè ïî îïðåäåëåíèþ è íàçûâàòü èõ íóëåâûìè.−→−→Îòìåòèì ôîðìàëüíóþ íåñèììåòðè÷íîñòü â äàííîì îïðåäåëåíèè: CD ðàâåí AB ,−→−→íî áóäåò ëè AB ðàâåí CD? Îòâåò, ê ñ÷àñòüþ, ïîëîæèòåëüíûé â ñèëó òîãî, ÷òî−→−→íàïðàâëåííûé îòðåçîê AB ïîëó÷àåòñÿ èç CD ñ ïîìîùüþ òî÷íî òàêîé æå êîíñòðóêöèè.Çàìåòèì, ÷òî âñå ñëó÷àè ïðè îïðåäåëåíèè ðàâåíñòâà íàïðàâëåííûõ îòðåçêîâ ìîæíî ñâåñòè ê îäíîìó ñëó÷àþ, åñëè ïðèíÿòü ôîðìàëüíî äðóãîå (è ïðèòîì ñèììåòðè÷−→−→íîå) îïðåäåëåíèå: íàçîâåì íàïðàâëåííûå îòðåçêè AB è CD ðàâíûìè, åñëè ñåðåäèíûîòðåçêîâ [AD] è [BC] ñîâïàäàþò. Ýêâèâàëåíòíîñòü íîâîãî îïðåäåëåíèÿ ïðåäûäóùåìóÅ.

Å. Òûðòûøíèêîâ57âûòåêàåò èç îáùåèçâåñòíûõ ñâîéñòâ ïàðàëëåëîãðàììà.Îáðàòèì âíèìàíèå íà òî, ÷òî ïðè ôèêñèðîâàííîé ñèñòåìå êîîðäèíàò ëþáîé íàïðàâëåííûé îòðåçîê ðàâåí íåêîòîðîìó è òîëüêî îäíîìó ðàäèóñ-âåêòîðó.9.3Îòíîøåíèå ýêâèâàëåíòíîñòèËþáîå íåïóñòîå ïîäìíîæåñòâî M ⊂ X × X îïðåäåëÿåò íà ìíîæåñòâå X áèíàðíîå îòíîøåíèå ìåæäó åãî ýëåìåíòàìè:Mx∼y⇔(x, y) ∈ M.X ìíîæåñòâî âñåõ ìàòðèö, M ìíîæåñòâî òàêèõ ïàð ìàòðèö (A, B),äëÿ êîòîðûõ ñóùåñòâóåò ïðîèçâåäåíèå AB . ßñíî, ÷òî èìåþòñÿ ïàðû ìàòðèö, íå âõîäÿMMùèå â M . Êðîìå òîãî, åñëè A ∼ B , òî îòñþäà íå ñëåäóåò, ÷òî B ∼ A.ÏÐÈÌÅÐ.Áèíàðíîå îòíîøåíèå M íà X íàçûâàåòñÿ îòíîøåíèåì ýêâèâàëåíòíîñòè, åñëè âûïîëíÿþòñÿ ñëåäóþùèå òðè ñâîéñòâà:M• x ∼ x äëÿ âñåõ ýëåìåíòîâ x ∈ XMM• åñëè x ∼ y , òî y ∼ xMM(ðåôëåêñèâíîñòü);(ñèììåòðè÷íîñòü);M• åñëè x ∼ y è y ∼ z , òî x ∼ z(òðàíçèòèâíîñòü).MÅñëè íà X çàäàíî îòíîøåíèå ýêâèâàëåíòíîñòè M è x ∼ y , òî x è y íàçûâàþòñÿ ýêâèâàëåíòíûìè ýëåìåíòàìè.

Ìíîæåñòâî âñåõ ýëåìåíòîâ èç X , ýêâèâàëåíòíûõ íåêîòîðîìóýëåìåíòó a ∈ X , íàçûâàåòñÿ êëàññîì ýêâèâàëåíòíîñòè, ïîðîæäåííûì ýëåìåíòîì a.Òåîðåìà. Íåïóñòîå ìíîæåñòâî X ñ îòíîøåíèåì ýêâèâàëåíòíîñòè ÿâëÿåòñÿ îáúåäèíåíèåì íåïåðåñåêàþùèõñÿ ïîäìíîæåñòâ, êàæäîå èç êîòîðûõ ñîñòîèò èç ýëåìåíòîâ,ýêâèâàëåíòíûõ ìåæäó ñîáîé è íå ýêâèâàëåíòíûõ íè îäíîìó èç ýëåìåíòîâ äðóãèõ ïîäìíîæåñòâ.Äîêàçàòåëüñòâî.

Ïóñòü X(a) îáîçíà÷àåò êëàññ ýêâèâàëåíòíîñòè, ïîðîæäåííûé ýëå-ìåíòîì a ∈ X . Âûáåðåì ïðîèçâîëüíûé ýëåìåíò x è ðàññìîòðèì åãî êëàññ ýêâèâàëåíòíîñòè X(a). Åñëè b, c ∈ X(a), òî êàæäûé èç íèõ ýêâèâàëåíòåí a, à çíà÷èò, â ñèëó òðàíçèòèâíîñòè, b è c ýêâèâàëåíòíû ìåæäó ñîáîé (b ∼ a, a ∼ c ⇒ b ∼ c). ßñíî òàêæå,÷òî X(b) = X(c) = X(a) (òî åñòü, êëàññ ýêâèâàëåíòíîñòè ïîðîæäàåòñÿ ëþáûì ñâîèìïðåäñòàâèòåëåì).Ïî îïðåäåëåíèþ, X(a) ñîäåðæèò àáñîëþòíî âñå ýëåìåíòû, ýêâèâàëåíòíûå a.

Ïîýòîìó åñëè b ∈/ X(a), òî b íå ÿâëÿåòñÿ ýêâèâàëåíòíûì a. Îòñþäà ñëåäóåò, ÷òî Têëàññûýêâèâàëåíòíîñòè X(a) è X(b) íå ïåðåñåêàþòñÿ: åñëè áû èìåëñÿ ýëåìåíò c ∈ X(a) X(b),òî ýòî áû îçíà÷àëî, ÷òî b ∈ X(a) ⇒ X(a) = X(b).Òàêèì îáðàçîì, äëÿ ïðîèçâîëüíûõ ýëåìåíòîâ a è b êëàññû ýêâèâàëåíòíîñòèX(a)Sè X(b) ëèáî íå ïåðåñåêàþòñÿ, ëèáî ñîâïàäàþò. Î÷åâèäíî, X =X(a). Äëÿ çàâåða∈Xøåíèÿ äîêàçàòåëüñòâà îñòàåòñÿ èñêëþ÷èòü èç ýòîãî îáúåäèíåíèÿ ñîâïàäàþùèå êëàññûýêâèâàëåíòíîñòè.

Характеристики

Тип файла
PDF-файл
Размер
1,77 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6418
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее