Главная » Просмотр файлов » Е.Е. Тыртышников - Матричный анализ и линейная алгебра

Е.Е. Тыртышников - Матричный анализ и линейная алгебра (1112313), страница 9

Файл №1112313 Е.Е. Тыртышников - Матричный анализ и линейная алгебра (Е.Е. Тыртышников - Матричный анализ и линейная алгебра) 9 страницаЕ.Е. Тыртышников - Матричный анализ и линейная алгебра (1112313) страница 92019-04-25СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 9)

. . aσ(n)n .(∗)σ∈SnÌû äîêàçàëè âàæíîåÓòâåðæäåíèå. Åñëè ôóíêöèÿ èíäèêàòîð ëèíåéíîé çàâèñèìîñòè ñóùåñòâóåò, òîîíà îïðåäåëÿåòñÿ ôîðìóëîé (∗).4.6ÎïðåäåëèòåëüÎïðåäåëåíèå. Ôóíêöèÿ âèäà (∗) íàçûâàåòñÿ îïðåäåëèòåëåì (äåòåðìèíàíòîì) ìàòðèöû A ñî ñòîëáöàìè a1 , a2 , . . . , an è îáîçíà÷àåòñÿ det A èëè |A|.Òàêèì îáðàçîì, åñëè A = [aij ] ìàòðèöà ðàçìåðîâ n × n, òî a11 .

. . a1n Xdet A = |A| = . . . . . . . . . =sgn(σ) aσ(1)1 aσ(2)2 . . . aσ(n)n . an1 . . . ann σ∈Sn×àñòíûå ñëó÷àè: a11 a21 a31a12a22a32a13a23a33 a11 a21(4)a12 = a11 a22 − a21 a12 ,a22 = a11 a22 a33 + a12 a23 a31 + a13 a21 a32 − a13 a22 a31 − a12 a21 a33 − a11 a23 a32 . îáùåì ñëó÷àå ñóììà (4) ñîäåðæèò n! ÷ëåíîâ, â êàæäîì èç íèõ ïåðåìíîæàþòñÿ nýëåìåíòîâ ìàòðèöû, ïðè÷åì íèêàêèå äâà ýëåìåíòà â îäíîì ïðîèçâåäåíèè íå ïðèíàäëåæàò îäíîé ñòðîêå èëè îäíîìó ñòîëáöó.Íåñìîòðÿ íà òî, ÷òî îïðåäåëèòåëü ââîäèòñÿ êàê ôóíêöèÿ îò ìàòðèöû, èñòîðè÷åñêèïîíÿòèå îïðåäåëèòåëÿ ñôîðìèðîâàëîñü â 18 âåêå (ñíà÷àëà â òðóäàõ Ëåéáíèöà è Êðàìåðà, çàòåì òåîðèÿ îïðåäåëèòåëåé áûëà ðàçâèòà â ðàáîòàõ Âàíäåðìîíäà, Ëàïëàñà, Êîøèè Ê.ßêîáè) íàìíîãî ðàíüøå ïîíÿòèÿ ìàòðèöû, ââåäåííîãî â àëãåáðó Ãàìèëüòîíîì èÊýëè â ñåðåäèíå 19 âåêà.

Êîíå÷íî, ñ ñàìîãî íà÷àëà îïðåäåëèòåëü ñâÿçûâàëñÿ ñ êâàäðàòíîé òàáëèöåé n × n ÷èñåë (ïîýòîìó ãîâîðèëè îá îïðåäåëèòåëå ïîðÿäêà n). Ýòî áûëè,â ÷àñòíîñòè, òàáëèöû êîýôôèöèåíòîâ "êâàäðàòíîé"ñèñòåìû ëèíåéíûõ àëãåáðàè÷åñêèõóðàâíåíèé. Íî òàêèå òàáëèöû ñòàëè íàçûâàòü ìàòðèöàìè ïîçæå êîãäà äëÿ íèõ ââåëèîïåðàöèþ óìíîæåíèÿ.Ëåêöèÿ 55.1Îïðåäåëèòåëü òðàíñïîíèðîâàííîé ìàòðèöûÏóñòü èìååòñÿ ïðÿìîóãîëüíàÿ ìàòðèöà ðàçìåðîâ m × n:A = [aij ],1 ≤ i ≤ m,1 ≤ j ≤ n.Åñëè ïîìåíÿòü ìåñòàìè ñòðîêè è ñòîëáöû, òî ïîëó÷àåòñÿ íîâàÿ ìàòðèöà ðàçìåðîân × m.

Îíà íàçûâàåòñÿ òðàíñïîíèðîâàííîé ïî îòíîøåíèþ ê A è îáîçíà÷àåòñÿ A> :A> = [aji ],1 ≤ j ≤ n,1 ≤ i ≤ m.Óòâåðæäåíèå. Äëÿ ëþáîé êâàäðàòíîé ìàòðèöû det A> = det A.Äîêàçàòåëüñòâî. Ñîãëàñíî îïðåäåëåíèþ òðàíñïîíèðîâàííîé ìàòðèöû è ôîðìóëå (4)èç Ëåêöèè 4 äëÿ îïðåäåëèòåëÿ ìàòðèöû ïîðÿäêà n,XXdet A> =sgn(σ) a1 σ(1) . . . , an σ(n) =sgn(σ) aσ−1 (1) 1 . . . , aσ−1 (n) nσ∈Sn=σ∈SnXsgn(σ −1 ) aσ−1 (1) 1 . . . , aσ−1 (n) n = det A.σ −1 ∈Sn ïîñëåäíåì ðàâåíñòâå áûëî ïðèíÿòî âî âíèìàíèå, ÷òî sgn(σ −1 ) = sgn(σ).Çàäà÷à.Äîêàæèòå, ÷òî ñòîëáöû âåùåñòâåííîé ïðÿìîóãîëüíîé ìàòðèöûòîãäà è òîëüêî òîãäà, êîãäà ëèíåéíî íåçàâèñèìû ñòîëáöû ìàòðèöû5.2A2ëèíåéíî íåçàâèñèìû>A A.Îïðåäåëèòåëü êàê ôóíêöèÿ ñòîëáöîâ (ñòðîê) ìàòðèöû(1) Îïðåäåëèòåëü êàê ôóíêöèÿ ñòîëáöîâ ìàòðèöû ÿâëÿåòñÿ ëèíåéíîé ôóíêöèåé îò-íîñèòåëüíî êàæäîãî ñòîëáöà: åñëè A = [a1 , . . .

, an ] è ai = αp + βq ëèíåéíàÿ êîìáèíàöèÿ ñòîëáöîâ p è q , òîdet A = α det Ap + β det Aq ,ãäå ìàòðèöû Ap è Aq ïîëó÷àþòñÿ èç A çàìåíîé ñòîëáöà ai íà p è q , ñîîòâåòñòâåííî.Äîêàçàòåëüñòâî.  ñîîòâåòñòâèè ñ îïðåäåëåíèåì,det A =Xsgn(σ) aσ(1)1 aσ(2)2 . . . aσ(i)i . . . aσ(n)nσ∈Sn2930Ëåêöèÿ 5=Xsgn(σ) aσ(1)1 aσ(2)2 . . . (αpσ(i)i + βqσ(i)i ) . . . aσ(n)nσ∈Sn=Xαsgn(σ) aσ(1)1 aσ(2)2 . . . pσ(i)i . . . aσ(n)nσ∈Sn+βXsgn(σ) aσ(1)1 aσ(2)2 . . . qσ(i)i .

. . aσ(n)n = α det Ap + β det Aq .2σ∈Sn(2) Îïðåäåëèòåëü ìåíÿåò çíàê ïðè ïåðåñòàíîâêå äâóõ ñòîëáöîâ.Äîêàçàòåëüñòâî. Ïóñòü ìàòðèöà B = [bij ] îòëè÷àåòñÿ îò A ïåðåñòàíîâêîé ñòîëáöîâ aiè aj . Òîãäà äëÿ ëþáîé ïîäñòàíîâêè σ ∈ Snaσ(1)1 . . . aσ(n)n = b(στ )(1)1 . . . b(στ )(n)n ,ãäå τ = (i, j), è ïîñêîëüêó òðàíñïîçèöèÿ ìåíÿåò çíàê ïîäñòàíîâêè,sgn (στ ) = −sgn (σ).Ëåãêî âèäåòü, ÷òî îòîáðàæåíèå σ → στ çàäàåò âçàèìíî-îäíîçíà÷íîå ñîîòâåòñòâèå ìåæäó ïîäñòàíîâêàìè. Êàæäûé ÷ëåí ñóììû âèäà (4) îïðåäåëÿåòñÿ îäíîé è òîëüêî îäíîéïîäñòàíîâêîé.

Ïîäñòàíîâêè σ è στ â ðàçëîæåíèÿõ det A è det B îïðåäåëÿþò ÷ëåíû ñïðîèçâåäåíèåì îäíèõ è òåõ æå ýëåìåíòîâ (â ðàçíîì ïîðÿäêå), íî ñ ïðîòèâîïîëîæíûìèçíàêàìè. Çíà÷èò, det A = − det B . 2(3) Åñëè ñòîëáöû ìàòðèöû ëèíåéíî çàâèñèìû, òî åå îïðåäåëèòåëü ðàâåí íóëþ.Äîêàçàòåëüñòâî. Ïðåæäå âñåãî çàìåòèì, ÷òî îïðåäåëèòåëü ñ äâóìÿ ðàâíûìè ñòîëáöàìè ðàâåí íóëþ, ïîñêîëüêó â ñèëó óòâåðæäåíèÿ (2) îí ðàâåí ñåáå ñàìîìó ñ ïðîòèâî-ïîëîæíûì çíàêîì.Åñëè ñòîëáöû a1 , a2 , . . . , an ëèíåéíî çàâèñèìû, òî õîòÿ áû îäèí èç íèõ ëèíåéíîâûðàæàåòñÿ ÷åðåç îñòàëüíûå.

ÏóñòüXαk ak .ai =k6=iÎáîçíà÷èì ÷åðåç B ìàòðèöó, ïîëó÷åííóþ èç A çàìåíîé ñòîëáöà ai íàXai −αk ak = 0.k6=iÎïèðàÿñü íà óæå óñòàíîâëåííîå ñâîéñòâî (1), íàõîäèìX0 = det B = det A −αk det Ak ,k6=iãäå ìàòðèöà Ak ïîëó÷àåòñÿ èç A çàìåíîé i-ãî ñòîëáöà íà ak . ßñíî, ÷òî â Ak ðàâíû i-éè k -é ñòîëáöû, ïîýòîìó det Ak = 0. Òàêèì îáðàçîì, det A = det B = 0. 2(4) Îïðåäåëèòåëü êàê ôóíêöèÿ ñòðîê ìàòðèöû îáëàäàåò ñâîéñòâàìè, àíàëîãè÷íûìè(1), (2), (3).Äîêàçàòåëüñòâî. Äîñòàòî÷íî ó÷åñòü, ÷òî det A = det A> , è ðàññìîòðåòü det A êàêôóíêöèþ ñòîëáöîâ ìàòðèöû A> .÷òîÇàäà÷à.Äàíû ìàòðèöû-ñòîëáöûdet A = 0,åñëèÇàäà÷à.2u 1 , .

. . , u k , v1 , . . . , vk ∈ RnèA = u1 v1> + ... + uk vk> .Äîêàçàòü,k < n.Ïóñòüu, v ∈ RnèI åäèíè÷íàÿ ìàòðèöà. Äîêàæèòå, ÷òîdet(I + uv > ) = 1 + v > u.Å. Å. Òûðòûøíèêîâ5.331Ñóùåñòâîâàíèå èíäèêàòîðà ëèíåéíîé çàâèñèìîñòèÒåîðåìà. Èíäèêàòîð ëèíåéíîé çàâèñèìîñòè (ôóíêöèÿ, íàäåëåííàÿ ñâîéñòâàìè (A),(B), (C) èç ïåðâîãî ðàçäåëà Ëåêöèè 4) ñóùåñòâóåò, åäèíñòâåí è ÿâëÿåòñÿ îïðåäåëèòåëåì.Ñâîéñòâà (A) è (B) èíäèêàòîðà ëèíåéíîé çàâèñèìîñòè ñîâïàäàþò ñ óñòàíîâëåííûìè âûøå ñâîéñòâàìè îïðåäåëèòåëÿ (1) è (3). Ñâîéñòâî (C) îçíà÷àåò, ÷òî îïðåäåëèòåëüåäèíè÷íîé ìàòðèöû ðàâåí 1 è ÿâëÿåòñÿ ñëåäñòâèåì ñëåäóþùåãî áîëåå îáùåãî óòâåðæäåíèÿ.Óòâåðæäåíèå.

Îïðåäåëèòåëü äèàãîíàëüíîé ìàòðèöû ðàâåí ïðîèçâåäåíèþ ýëåìåíòîâåå äèàãîíàëè:a11det ..0.0 = a11 . . . ann .annÄîêàçàòåëüñòâî. Äëÿ äèàãîíàëüíîé ìàòðèöû â ñóììå (4) äëÿ åå îïðåäåëèòåëÿ åñòüòîëüêî îäíî íåíóëåâîå ñëàãàåìîå, ðàâíîå ïðîèçâåäåíèþ ýëåìåíòîâ ãëàâíîé äèàãîíàëè.25.4Ïîäìàòðèöû è ìèíîðûÄëÿ çàäàííîé ìàòðèöû A = [aij ] ìîæíî âûáðàòü êàêèå-òî èç åå ñòðîê è ñòîëáöîâ è ñîñòàâèòü òàáëèöó ýëåìåíòîâ, ðàñïîëîæåííûõ íà ïåðåñå÷åíèè âûáðàííûõ ñòðîê è ñòîëáöîâ.Òàêàÿ òàáëèöà íàçûâàåòñÿ ïîäìàòðèöåé ìàòðèöû A.Ïóñòü A êâàäðàòíàÿ ìàòðèöà ïîðÿäêà n. ×òîáû çàäàòü êâàäðàòíóþ ïîäìàòðèöóïîðÿäêà k , íóæíî óêàçàòü íîìåðà ñîäåðæàùèõ åå ñòðîê 1 ≤ i1 < .

. . < ik ≤ n è ñòîëáöîâ1 ≤ j1 < . . . < jk ≤ n. Îáîçíà÷èì ÷åðåç Nk ìíîæåñòâî âñåõ ñèñòåì íîìåðîâ (i1 , . . . , ik ),óïîðÿäî÷åííûõ ïî âîçðàñòàíèþ 1 ≤ i1 < . . . < ik ≤ n. Òîãäà çàäàíèå ïîäìàòðèöûðàâíîñèëüíî âûáîðó äâóõ êîíêðåòíûõ ñèñòåì íîìåðîâI = (i1 , . . . , ik ) ∈ Nk ,J = (j1 , . . . , jk ) ∈ Nk .Ïîäìàòðèöà íà ñòðîêàõ ñ íîìåðàìè èç I è ñòîëáöàõ ñ íîìåðàìè èç J îáîçíà÷àåòñÿA(I, J) = [aip jq ],1 ≤ p ≤ k,1 ≤ q ≤ k.Ïóñòü I 0 = (i01 , . . . , i0m ) åùå îäíà ñèñòåìà íîìåðîâ, óïîðÿäî÷åííûõ ïî âîçðàñòàíèþ1 ≤ i01 < . .

. < i0m ≤ n. Íàçîâåì ñèñòåìó I 0 äîïîëíèòåëüíîé äëÿ I = (i1 , . . . , ik ), åñëè{i1 , . . . , ik } ∩ {i01 , . . . , i0m } = ∅,{i1 , . . . , ik } ∪ {i01 , . . . , i0m } = {1, . . . , n}.Î÷åâèäíî, â ýòîì ñëó÷àå k + m = n.Ïóñòü çàäàíû ñèñòåìû ñòðî÷íûõ è ñòîëáöîâûõ íîìåðîâ I, J ∈ Nk è ïóñòü I 0 è J 0 äîïîëíèòåëüíûå ñèñòåìû, ñîîòâåòñòâåííî, äëÿ I è J .

Ïîäìàòðèöà A(I 0 , J 0 ) ïîðÿäêàm = n−k íàçûâàåòñÿ äîïîëíèòåëüíîé ïîäìàòðèöåé ïî îòíîøåíèþ ê ïîäìàòðèöå A(I, J)ïîðÿäêà k .Îïðåäåëèòåëü ïîäìàòðèöû ïîðÿäêà k íàçûâàåòñÿ òàêæå ìèíîðîì ïîðÿäêà k , à îïðåäåëèòåëü ñîîòâåòñòâóþùåé äîïîëíèòåëüíîé ïîäìàòðèöû äîïîëíèòåëüíûì ìèíîðîì.325.5Ëåêöèÿ 5Çàìå÷àíèå î ïîäñòàíîâêàõÊàê ìû çíàåì, ïîäñòàíîâêà σ ñòåïåíè n çàäàåòñÿ òàáëèöåé12...nσ=.σ(1) σ(2) . . . σ(n)Ïîñêîëüêó îòîáðàæåíèå ïîëíîñòüþ îïðåäåëÿåòñÿ óêàçàíèåì ñîîòâåòñòâèé i → σ(i), ïîðÿäîê ñòîëáöîâ â ýòîé òàáëèöå íå èìååò çíà÷åíèÿ.

Äðóãèìè ñëîâàìè, äëÿ ëþáîé ïîäñòàíîâêè π ∈ Sn òàáëèöàπ(1)π(2)...π(n)σe=σ(π(1)) σ(π(2)) . . . σ(π(n))îäíîçíà÷íî îïðåäåëÿåò òó æå ñàìóþ ïîäñòàíîâêó σ = σe.Ïðè ýòîì î÷åâèäíî, ÷òî ÷åòíîñòü ÷èñëà èíâåðñèé äëÿ σ ñîâïàäàåò ñ ÷åòíîñòüþ ñóììû ÷èñëà èíâåðñèé äëÿ ïîäñòàíîâîê π è σπ (ïîñêîëüêó ÷åòíîñòü ÷èñëà èíâåðñèé äëÿïðîèçâåäåíèÿ σπ ñîâïàäàåò ñ ÷åòíîñòüþ ñóììû ÷èñëà èíâåðñèé äëÿ σ è π ). Îòñþäàÿñíî, ÷òî åñëè ïîäñòàíîâêà çàäàíà òàáëèöåé âèäàs(1) s(2) . .

Характеристики

Тип файла
PDF-файл
Размер
1,77 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6418
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее