Главная » Просмотр файлов » Е.Е. Тыртышников - Матричный анализ и линейная алгебра

Е.Е. Тыртышников - Матричный анализ и линейная алгебра (1112313), страница 6

Файл №1112313 Е.Е. Тыртышников - Матричный анализ и линейная алгебра (Е.Е. Тыртышников - Матричный анализ и линейная алгебра) 6 страницаЕ.Е. Тыртышников - Матричный анализ и линейная алгебра (1112313) страница 62019-04-25СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 6)

Âîåâîäèíà Ëèíåéíàÿ àëãåáðà, Íàóêà, 1980.1112Ëåêöèÿ 2ýëåìåíò y = f (x) ìíîæåñòâà Y . Çàäàíèå ïðàâèëà ðàâíîñèëüíî âûáîðó ïîäìíîæåñòâàΓ = {(x, f (x)) : x ∈ X} ⊂ X × Y,íàçûâàåìîãî ãðàôèêîì îòîáðàæåíèÿ (ôóíêöèè, îïåðàòîðà) f .Ýëåìåíò y = f (x) íàçûâàåòñÿ îáðàçîì ýëåìåíòà x, à x ïðîîáðàçîì ýëåìåíòà y ïðèîòîáðàæåíèè f . ×òîáû ïîä÷åðêíóòü, ÷òî f äåéñòâóåò èç X â Y , ïèøóò òàê: f : X → Y .Ìíîæåñòâî f (X) ≡ {y : y = f (x) äëÿ íåêîòîðîãî x ∈ X} íàçûâàåòñÿ îáðàçîì(ìíîæåñòâîì çíà÷åíèé) îòîáðàæåíèÿ f .Åñëè M ⊂ Y , òî ìíîæåñòâî f −1 (M ) ≡ {x : f (x) ∈ M } íàçûâàåòñÿ ïîëíûì ïðîîáðàçîì ìíîæåñòâà M .

Åñëè M = {y}, òî ïèøóò òàêèì îáðàçîì: f −1 (y) = f −1 (M ).Îòîáðàæåíèå f : X → Y íàçûâàåòñÿ îáðàòèìûì, åñëè ñóùåñòâóåò îòîáðàæåíèåg : Y → X òàêîå, ÷òî f (g(y)) = y ∀ y ∈ Y è g(f (x)) = x ∀ x ∈ X . Ïðè ýòîì g íàçûâàþòîáðàòíûì îòîáðàæåíèåì äëÿ f è ïèøóò g = f −1 .Îòîáðàæåíèå f íàçûâàåòñÿ âçàèìíî-îäíîçíà÷íûì, åñëè äëÿ ëþáîãî y ∈ Y ïîëíûéïðîîáðàç f −1 (y) ñîñòîèò ðîâíî èç îäíîãî ýëåìåíòà. Ëåãêî ïîêàçàòü, ÷òî îáðàòèìîñòüðàâíîñèëüíà âçàèìíîé îäíîçíà÷íîñòè.2.3Àëãåáðàè÷åñêèå îïåðàöèèÎòîáðàæåíèå f : X × X → X íàçûâàåòñÿ àëãåáðàè÷åñêîé îïåðàöèåé íà X .

Ïóñòü äëÿîáîçíà÷åíèÿ òàêîé îïåðàöèè èñïîëüçóòñÿ ñèìâîë ∗. Òîãäà çàïèñü c = a ∗ b îçíà÷àåò, ÷òî(a, b) ∈ X × X è c = f ((a, b)).Åñëè çàäàíî îòîáðàæåíèå f : M → X íà íåïóñòîì ïîäìíîæåñòâå M ⊂ X × X , òî fíàçûâàåòñÿ ÷àñòè÷íîé àëãåáðàè÷åñêîé îïåðàöèåé íà X . Òàêîâîé, â ÷àñòíîñòè, ÿâëÿåòñÿîïåðàöèÿ óìíîæåíèÿ ìàòðèö íà ìíîæåñòâå âñåõ ìàòðèö.Cèìâîë ∗ ÷àñòî îïóñêàåòñÿ, ïðè ýòîì ïèøóò ab = a ∗ b, íàçûâàþò îïåðàöèþ óìíîæåíèåì, à ýëåìåíò ab (åñëè îí ñóùåñòâóåò) ïðîèçâåäåíèåì ýëåìåíòîâ a è b.2.4Àññîöèàòèâíîñòü è ñêîáêè×àñòè÷íàÿ àëãåáðàè÷åñêàÿ îïåðàöèÿ íà X íàçûâàåòñÿ àññîöèàòèâíîé, åñëè äëÿ ëþáûõa, b, c ∈ X èç ñóùåñòâîâàíèÿ ïðîèçâåäåíèé ab è bc âûòåêàåò ñóùåñòâîâàíèå ïðîèçâåäåíèéa(bc), (ab)c è ðàâåíñòâîa(bc) = (ab)c. ýòîì ñëó÷àå åñòåñòâåííî óáðàòü ñêîáêè è ïèñàòü abc ≡ a(bc) = (ab)c.Òåîðåìà. Ïóñòü íà X çàäàíà àññîöèàòèâíàÿ ÷àñòè÷íàÿ àëãåáðàè÷åñêàÿ îïåðàöèÿ èx1 , .

. . , xn ïðîèçâîëüíûå ýëåìåíòû èç X , äëÿ êîòîðûõ ñóùåñòâóþò ïðîèçâåäåíèÿx1 x2 , x2 x3 , . . ., xn−1 xn . Òîãäà ñóùåñòâóåò ðàññòàíîâêà ñêîáîê, îïðåäåëÿþùàÿ ýëåìåíòx = x1 x2 . . . xn ,ïðè ýòîì ëþáàÿ ðàññòàíîâêà ñêîáîê äàåò îäèí è òîò æå ýëåìåíò x.Äîêàçàòåëüñòâî. Ïðîâåäåì èíäóêöèþ ïî n. Äîêàæåì ñíà÷àëà ñóùåñòâîâàíèå íåêî-òîðîé ðàññòàíîâêè ñêîáîê, îïðåäåëÿþùåé x. Ñîãëàñíî èíäóêòèâíîìó ïðåäïîëîæåíèþ,ñóùåñòâóåò ïðîèçâåäåíèå (x1 ... xn−2 )xn−1 . Ïî óñëîâèþ òåîðåìû ñóùåñòâóåò òàêæå ïðîèçâåäåíèå xn−1 xn .

Òàêèì îáðàçîì, ìîæíî ïðèìåíèòü îïðåäåëåíèå àññîöèàòèâíîñòè ïîîòíîøåíèþ ê ýëåìåíòàì a = x1 . . . xn−2 , b = xn−1 , c = xn .Å. Å. Òûðòûøíèêîâ13Ïóñòü ýëåìåíòû a è b ïîëó÷àþòñÿ ïðè ðàçíûõ ðàññòàíîâêàõ ñêîáîê.  ëþáîì ñëó÷àåèìååìb = (x1 . . . xm )(xm+1 . . . xn ).a = (x1 . . . xk )(xk+1 . . . xn ),Ïóñòü k < m. Òîãäà, â ñèëó àññîöèàòèâíîñòè,a = (x1 . . . xk )((xk+1 . . . xm )(xm+1 . .

. xn )) =((x1 . . . xk )(xk+1 . . . xm ))(xm+1 . . . xn ) = (x1 . . . xm ))(xm+1 . . . xn ) = b. 22.5Àññîöèàòèâíîñòü ïðè óìíîæåíèè ìàòðèöÏóñòü íóæíî âû÷èñëèòü ïðîèçâåäåíèå òðåõ ïðÿìîóãîëüíûõ ìàòðèö ðàçìåðîâ 1×n, n×1è 1 × n: c11A = BCD = [b11 . . . b1n ] . . .  [d11 . . .

d1n ].cn1 äàííîì ñëó÷àå åñòü äâà âàðèàíòà ðàññòàíîâêè ñêîáîê:A = B(CD) = [b11c11 d11 . . . c11 d1n...... ,. . . b1n ]  . . .cn1 d11 . . . cn1 d1nA = (BC)D = [(b11 c11 + . . . + b1n cn1 )] [d11 . . . d1n ].(1)(2)Âàðèàíòû (1) è (2) ïðèâîäÿò ê äâóì ðàçíûì àëãîðèòìàì âû÷èñëåíèÿ ìàòðèöû A. ñèëó àññîöèàòèâíîñòè ðåçóëüòàòû äîëæíû áûòü îäèíàêîâûìè. Íî àðèôìåòè÷åñêàÿðàáîòà áóäåò ðàçíàÿ! Ïðèìåíÿÿ ïðàâèëî ñòðîêà íà ñòîëáåö, ïîëó÷àåì 2n2 óìíîæåíèéâ ñëó÷àå (1) è âñåãî 2n óìíîæåíèé â ñëó÷àå (2).2.6ÃðóïïûÍåïóñòîå ìíîæåñòâî G ñ àññîöèàòèâíîé àëãåáðàè÷åñêîé îïåðàöèåé íàçûâàåòñÿ ãðóïïîé,åñëè:(1) ñóùåñòâóåò ýëåìåíò e ∈ G òàêîé, ÷òî ae = ea = a äëÿ ëþáîãî ýëåìåíòà a ∈ G;(2) äëÿ ëþáîãî ýëåìåíòà a ∈ G ñóùåñòâóåò ýëåìåíò b ∈ G òàêîé, ÷òî ab = ba = e.Ýëåìåíò e îïðåäåëÿåòñÿ ñâîéñòâîì (1) îäíîçíà÷íî: åñëè e1 è e2 äâà òàêèõ ýëåìåíòà,òî e1 = e1 e2 = e2 .

Îí íàçûâàåòñÿ åäèíè÷íûì.Ýëåìåíò b èç ñâîéñòâà (2) îäíîçíà÷íî îïðåäåëÿåòñÿ ïî a: åñëè b1 è b2 äâà òàêèõ ýëåìåíòà, òî b1 = b1 (ab2 ) = (b1 a)b2 = b2 . Ýëåìåíò b íàçûâàåòñÿ îáðàòíûì äëÿ a.Îáîçíà÷åíèå: b = a−1 .Äëÿ ëþáûõ ôèêñèðîâàííûõ a, b ∈ G ìîæíî ðàññìîòðåòü óðàâíåíèÿ ax = b (îòíîñèòåëüíî x) è ya = b (îòíîñèòåëüíî y ). Îáà óðàâíåíèÿ îäíîçíà÷íî ðàçðåøèìû: x = a−1 bè y = ba−1 .Ãðóïïà íàçûâàåòñÿ àáåëåâîé (êîììóòàòèâíîé), åñëè ab = ba äëÿ âñåõ a, b ∈ G.14Ëåêöèÿ 22.7Ïðèìåðû àáåëåâûõ ãðóïï1.

G = R ìíîæåñòâî âåùåñòâåííûõ ÷èñåë, îïåðàöèÿ ñëîæåíèå ÷èñåë. Ðîëü åäè-íè÷íîãî ýëåìåíòà èãðàåò ÷èñëî 0.2. G = R\{0} ìíîæåñòâî íåíóëåâûõ âåùåñòâåííûõ ÷èñåë, îïåðàöèÿ óìíîæåíèå÷èñåë. Ðîëü åäèíè÷íîãî ýëåìåíòà èãðàåò ÷èñëî 1.3. G = Q ìíîæåñòâî ðàöèîíàëüíûõ ÷èñåë, îïåðàöèÿ ñëîæåíèå ÷èñåë. Ðîëü åäèíè÷íîãî ýëåìåíòà èãðàåò ÷èñëî 0.4. G = Q\{0} ìíîæåñòâî íåíóëåâûõ ðàöèîíàëüíûõ ÷èñåë, îïåðàöèÿ óìíîæåíèå÷èñåë. Ðîëü åäèíè÷íîãî ýëåìåíòà èãðàåò ÷èñëî 1.√5. G ìíîæåñòâî íåíóëåâûõ âåùåñòâåííûõ ÷èñåë âèäà a+b 2, ãäå a, b ðàöèîíàëüíûå÷èñëà.

Îïåðàöèÿ óìíîæåíèå ÷èñåë.Ïðåæäå âñåãî, äîêàæåì, ÷òî ïðîèçâåäåíèå ÷èñåë èç G ïðèíàäëåæèò G:√√√(a + b 2)(c + d 2) = (ac + 2bd) + (ad + bc) 2,èç ðàöèîíàëüíîñòè ÷èñåë a, b, c, d âûòåêàåò ðàöèîíàëüíîñòü√ ÷èñåë ac + 2bd è ad + bc.Äàëåå,åäèíè÷íûìýëåìåíòîìÿâëÿåòñÿ÷èñëî1=1+0·2. Îáðàòíûé ýëåìåíò äëÿ√a + b 2, êàê ëåãêî ïðîâåðèòü, èìååò âèä √a−b+2.a2 − 2b2a2 − 2b2Çàäà÷à.GÏóñòüG ãðóïïà ñ åäèíèöåée.Äîêàæèòå, ÷òî åñëèa2 = eäëÿ ëþáîãîa ∈ G,òî ãðóïïààáåëåâà.2.8Ãðóïïà íåâûðîæäåííûõ äèàãîíàëüíûõ ìàòðèöÌàòðèöà A = [aij ] ðàçìåðîâ n × n íàçûâàåòñÿ äèàãîíàëüíîé, åñëè aij = 0 ïðè i 6= j .Äèàãîíàëüíàÿ ìàòðèöà A íàçûâàåòñÿ íåâûðîæäåííîé, åñëè aii 6= 0 ïðè âñåõ 1 ≤ i ≤ n.Ìíîæåñòâî íåâûðîæäåííûõ äèàãîíàëüíûõ n × n-ìàòðèö ñ âåùåñòâåííûìè ýëåìåíòàìè è îïåðàöèåé óìíîæåíèÿ ìàòðèö ÿâëÿåòñÿ àáåëåâîé ãðóïïîé. Ðîëü åäèíè÷íîãî ýëåìåíòà èãðàåò ìàòðèöà1I=....1Îíà íàçûâàåòñÿ åäèíè÷íîé ìàòðèöåé.Çàäà÷à.A ïîðÿäêà n êîììóòèðóåò ñî âñåìè ìàòðèöàìè ïîðÿäêà n: AB = BA äëÿ âñåõn.

Äîêàæèòå, ÷òî A äèàãîíàëüíàÿ ìàòðèöà ñ ðàâíûìè ýëåìåíòàìè íà äèàãîíàëè.2ÌàòðèöàìàòðèöB2.9Ãðóïïà íåâûðîæäåííûõ òðåóãîëüíûõ ìàòðèöïîðÿäêàÌàòðèöà A = [aij ] ðàçìåðîâ n × n íàçûâåòñÿ íèæíåé òðåóãîëüíîé, åñëè aij = 0 ïðèi < j , è âåðõíåé òðåóãîëüíîé, åñëè aij = 0 ïðè i > j . Òðåóãîëüíàÿ ìàòðèöà íàçûâàåòñÿíåâûðîæäåííîé, åñëè aii 6= 0 ïðè âñåõ 1 ≤ i ≤ n.Ìíîæåñòâî íåâûðîæäåííûõ íèæíèõ (âåðõíèõ) òðåóãîëüíûõ ìàòðèö ñ âåùåñòâåííûìè ýëåìåíòàìè è îïåðàöèåé óìíîæåíèÿ ìàòðèö ÿâëÿåòñÿ ãðóïïîé (íåêîììóòàòèâíîé).Äîêàçàòåëüñòâî ñîñòîèò èç òðåõ ýòàïîâ:2 Òàêèå ìàòðèöû íàçûâàþòñÿñêàëÿðíûìè.Å.

Å. Òûðòûøíèêîâ15• ïðîâåðèòü, ÷òî ïðîèçâåäåíèå íåâûðîæäåííûõ íèæíèõ (âåðõíèõ) òðåóãîëüíûõ ìàòðèö ÿâëÿåòñÿ òàêæå íèæíåé (âåðõíåé) òðåóãîëüíîé ìàòðèöåé;• ïðîâåðèòü, ÷òî ðîëü åäèíè÷íîãî ýëåìåíòà èãðàåò åäèíè÷íàÿ ìàòðèöà I ;• ïðîâåðèòü, ÷òî äëÿ íåâûðîæäåííîé íèæíåé (âåðõíåé) òðåóãîëüíîé ìàòðèöû Aðàçðåøèìû óðàâíåíèÿ AX = I è Y A = I , ïðè ýòîì îáå ìàòðèöû X è Y ÿâëÿþòñÿíèæíèìè (âåðõíèìè) òðåóãîëüíûìè.

Ïîñëå ýòîãî ðàâåíñòâî X = Y ÿâëÿåòñÿ óæåî÷åâèäíûì.2.10ÏîäãðóïïûÏîäìíîæåñòâî H ⊂ G íàçûâàåòñÿ ïîäãðóïïîé ãðóïïû G, åñëè îíî ÿâëÿåòñÿ ãðóïïîéîòíîñèòåëüíî îïåðàöèè, äåéñòâóþùåé â G. Äëÿ ýòîãî íåîáõîäèìî è äîñòàòî÷íî, ÷òîáû• ab ∈ H äëÿ ëþáûõ ýëåìåíòîâ a, b ∈ H ;• a−1 ∈ H äëÿ ëþáîãî ýëåìåíòà a ∈ H .Íàïðèìåð, ãðóïïà íåâûðîæäåííûõ äèàãîíàëüíûõ ìàòðèö ÿâëÿåòñÿ ïîäãðóïïîéãðóïïû íåâûðîæäåííûõ íèæíèõ (âåðõíèõ) òðåóãîëüíûõ n × n-ìàòðèö.2.11Ñòåïåíè ýëåìåíòàÇàôèêñèðóåì ïðîèçâîëüíûé ýëåìåíò a â ãðóïïå G è ðàññìîòðèì ìèíèìàëüíóþ ñîäåðæàùóþ a ïîäãðóïïó H(a) ⊂ G.

Ìèíèìàëüíîñòü îçíà÷àåò, ÷òî H(a) ⊂ H äëÿ ëþáîéïîäãðóïïû H , ñîäåðæàùåé a. Ëåãêî âèäåòü, ÷òîH(a) = {ak : k öåëîå ÷èñëî}.Ïî îïðåäåëåíèþ, a0 = e, ak = a . . . a (a ïîâòîðÿåòñÿ k ðàç) ïðè öåëîì ïîëîæèòåëüíîì k ,a−k = (a−1 )k . Íåïîñðåäñòâåííî èç îïðåäåëåíèÿ âûòåêàåò, ÷òîak+m = ak am2.12äëÿ ëþáûõ öåëûõ k , m.Öèêëè÷åñêèå ãðóïïûÃðóïïà H(a) íàçûâàåòñÿ öèêëè÷åñêîé ãðóïïîé, ïîðîæäåííîé ýëåìåíòîì a. Ìèíèìàëüíîå öåëîå k > 0 òàêîå, ÷òî ak = e, íàçûâàåòñÿ ïîðÿäêîì ýëåìåíòà a. Åñëè ak 6= e ïðèâñåõ k > 0, òî a íàçûâàåòñÿ ýëåìåíòîì áåñêîíå÷íîãî ïîðÿäêà.Òåîðåìà. Ëþáàÿ ïîäãðóïïà öèêëè÷åñêîé ãðóïïû ÿâëÿåòñÿ öèêëè÷åñêîé.Äîêàçàòåëüñòâî.

Ïîäãðóïïà H ⊂ H(a) ñîñòîèò èç êàêèõ-òî ñòåïåíåé ýëåìåíòà a:H = {ai1 , ai2 , . . . }.Ïóñòü m íàèìåíüøåå öåëîå ïîëîæèòåëüíîå ÷èñëî ñðåäè i1 , i2 , . . . . Òîãäà ÿñíî, ÷òî Hñîäåðæèò âñå ýëåìåíòû âèäà amk . Äîêàæåì, ÷òî â H íå ìîæåò áûòü äðóãèõ ñòåïåíåéýëåìåíòà a. Ïóñòü an ∈ H . Ðàçäåëèì n ñ îñòàòêîì íà m:n = qm + r,q, r öåëûå,0 ≤ r ≤ m − 1.Òîãäà ar = an a−qm ∈ H .

 ñëó÷àå r > 0 ïîëó÷àåì ïðîòèâîðå÷èå ñ ìèíèìàëüíîñòüþ m.Ïîýòîìó r = 0. 2Çàäà÷à.Íàéòè âñå ïîäãðóïïû ãðóïïû öåëûõ ÷èñåëZîòíîñèòåëüíî îïåðàöèè ñëîæåíèÿ ÷èñåë.16Ëåêöèÿ 2Ëåêöèÿ 33.1Ñèñòåìà ëèíåéíûõ àëãåáðàè÷åñêèõ óðàâíåíèéÑèñòåìà óðàâíåíèé âèäà a11 x1 + . . . + a1k xkan1 x1 + .

. . + ank xk=...=b1 ,(1)bnîòíîñèòåëüíî íåèçâåñòíûõ âåëè÷èí x1 , . . . , xk íàçûâàåòñÿ ñèñòåìîé ëèíåéíûõ àëãåáðàè÷åñêèõ óðàâíåíèé. Ìû óæå çíàåì, ÷òî ñ ïîìîùüþ ìàòðè÷íûõ îáîçíà÷åíèé åå ìîæíîçàïèñàòü â âèäåa11 . . . a1kx1b1Ax = b,A =  ...

... ... , x =  ... , b =  ... .an1 . . . ankxkbnÌíîæåñòâî ìàòðèö ðàçìåðîâ n × k ñ ýëåìåíòàìè aij ∈ R, ãäå R ìíîæåñòâî âåùåñòâåííûõ ÷èñåë, îáîçíà÷èì Rn×k .  ñîãëàñèè ñ ýòèì îáîçíà÷åíèåì Rn×1 è Rk×1 ìíîæåñòâà ìàòðèö-ñòîëáöîâ, èìåþùèõ, ñîîòâåòñòâåííî, n è k ýëåìåíòîâ. Äëÿ êðàòêîñòè áóäåì ïèñàòü Rn = Rn×1 è Rk = Rk×1 è íàçûâàòü ìàòðèöû-ñòîëáöû âåêòîðàìè.Ìàòðèöà A ∈ Rn×k íàçûâàåòñÿ ìàòðèöåé êîýôôèöèåíòîâ, âåêòîð b ∈ Rn ïðàâîé÷àñòüþ, à âåêòîð x ∈ Rk ðåøåíèåì ñèñòåìû (1).3.2Ëèíåéíûå êîìáèíàöèèÄëÿ ïîíèìàíèÿ ñóòè äåëà èñêëþ÷èòåëüíî ïîëåçíà ñëåäóþùàÿ èíòåðïðåòàöèÿ ñèñòåìû(1).

Ñîãëàñíî îïðåäåëåíèþ óìíîæåíèÿ ìàòðèöû íà ÷èñëî, åñëè α ∈ R, òî"#"#αb1...bn≡αb1...αbn.Ïóñòü a1 , . . . , ak ñòîëáöû ìàòðèöû A:a1 , . . . , ak ∈ Rn .A = [a1 , . . . , ak ],Òîãäà ñîîòíîøåíèÿ (1) ðàâíîñèëüíû ðàâåíñòâó ìåæäó âåêòîðàìèx1 a1 + . . . + xk ak = b.(2)Âûðàæåíèå x1 a1 + . . . + xk ak íàçûâàåòñÿ ëèíåéíîé êîìáèíàöèåé âåêòîðîâ a1 , . . . , ak ,à ÷èñëà x1 , . .

. , xk êîýôôèöèåíòàìè ëèíåéíîé êîìáèíàöèè. Ìíîæåñòâî âñåâîçìîæíûõ ëèíåéíûõ êîìáèíàöèé âåêòîðîâ a1 , . . . , akL(a1 , . . . , ak ) = {α1 a1 + . . . + αk ak : α1 , . . . , αk ∈ R}1718Ëåêöèÿ 3íàçûâàåòñÿ ëèíåéíîé îáîëî÷êîé âåêòîðîâ a1 , . . . , ak .Òàêèì îáðàçîì, ðàâåíñòâî (2) îçíà÷àåò, ÷òîb ∈ L(a1 , . .

. , ak ).(3)Äðóãèìè ñëîâàìè, ñèñòåìà (1) èìååò ðåøåíèå (ñîâìåñòíà) òîãäà è òîëüêî òîãäà, êîãäà ïðàâàÿ ÷àñòü b ïðèíàäëåæèò ëèíåéíîé îáîëî÷êå (ÿâëÿåòñÿ ëèíåéíîé êîìáèíàöèåé)ñòîëáöîâ ìàòðèöû êîýôôèöèåíòîâ.3.3Ëèíåéíàÿ çàâèñèìîñòüÂåêòîðû, âñå ýëåìåíòû êîòîðûõ ðàâíû íóëþ, íàçûâàþò íóëåâûìè âåêòîðàìè, à èíîãäàïðîñòî íóëÿìè. Ëþáîé íóëåâîé âåêòîð áóäåì îáîçíà÷àòü ñèìâîëîì 0.Ëèíåéíàÿ êîìáèíàöèÿ âåêòîðîâ íàçûâàåòñÿ íåòðèâèàëüíîé, åñëè õîòÿ áû îäèí èç ååêîýôôèöèåíòîâ îòëè÷åí îò íóëÿ.

Ñèñòåìà (äðóãèìè ñëîâàìè, íåïóñòàÿ óïîðÿäî÷åííàÿñîâîêóïíîñòü êîíå÷íîãî ÷èñëà) âåêòîðîâ íàçûâàåòñÿ ëèíåéíî çàâèñèìîé, åñëè äëÿ íèõñóùåñòâóåò íåòðèâàëüíàÿ ëèíåéíàÿ êîìáèíàöèÿ, ðàâíàÿ íóëåâîìó âåêòîðó.Ëåììà 1. Åñëè a1 , . . . , ak ëèíåéíî çàâèñèìàÿ ñèñòåìà k > 1 íåíóëåâûõ âåêòîðîâ,òî â íåé ñóùåñòâóåò âåêòîð am , m > 1, ÿâëÿþùèéñÿ ëèíåéíîé êîìáèíàöèåé ïðåäûäóùèõ âåêòîðîâ:am ∈ L(a1 , . . . , am−1 ).Äîêàçàòåëüñòâî. Ðàññìîòðèì ðàâíóþ íóëþ íåòðèâèàëüíóþ ëèíåéíóþ êîìáèíàöèþα1 a1 + .

Характеристики

Тип файла
PDF-файл
Размер
1,77 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6418
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее