Е.Е. Тыртышников - Матричный анализ и линейная алгебра (1112313), страница 15
Текст из файла (страница 15)
2Ïóñòü G ïðîèçâîëüíàÿ (íå îáÿçàòåëüíî àáåëåâà) ãðóïïà. Ýëåìåíòûa, b ∈ G íàçûâàþòñÿ ñîïðÿæåííûìè, åñëè äëÿ íåêîòîðîãî h ∈ G (çàâèñÿùåãî îò a è b)ÏÐÈÌÅÐ 1.58Ëåêöèÿ 9âûïîëíÿåòñÿ ðàâåíñòâî a = hbh−1 . Ñîïðÿæåííîñòü ýëåìåíòîâ ýòî áèíàðíîå îòíîøåíèåíà G, êîòîðîå, êàê ëåãêî ïðîâåðèòü, ÿâëÿåòñÿ îòíîøåíèåì ýêâèâàëåíòíîñòè.Ïóñòü Z ìíîæåñòâî öåëûõ ÷èñåë, à p íåêîòîðîå íàòóðàëüíîå(öåëîå ïîëîæèòåëüíîå) ÷èñëî. Öåëûå ÷èñëà x è y íàçûâàþòñÿ ñðàâíèìûìè ïî ìîäóëþp, åñëè îíè èìåþò îäèíàêîâûå îñòàòêè ïðè äåëåíèè íà p (ýòî îçíà÷àåò, ÷òî ðàçíîñòüx − y äåëèòñÿ íàöåëî íà p, òî åñòü x − y = kp äëÿ íåêîòîðîãî öåëîãî k ). Îáîçíà÷åíèå:x = y (modp).Ïóñòü x ∼ y ⇔ x − y (mod). Ýòî áèíàðíîå îòíîøåíèå íà Z ÿâëÿåòñÿ îòíîøåíèåìýêâèâàëåíòíîñòè.
 äàííîì ñëó÷àå èìååòñÿ ðîâíî p ðàçëè÷íûõ êëàññîâ ýêâèâàëåíòíîñòèÏÐÈÌÅÐ 2.Z(0), Z(1), . . . , Z(p − 1),íàçûâàåìûõ îáû÷íî âû÷åòàìè ïî ìîäóëþ p.9.4Ñâîáîäíûé âåêòîðÓòâåðæäåíèå. Îòíîøåíèå ðàâåíñòâà íàïðàâëåííûõ îòðåçêîâ ÿâëÿåòñÿ îòíîøåíèåìýêâèâàëåíòíîñòè.Äîêàçàòåëüñòâî íåïîñðåäñòâåííî âûòåêàåò èç îïðåäåëåíèÿ ðàâåíñòâà íàïðàâëåííûõîòðåçêîâ.Îïðåäåëåíèå. Ëþáîé êëàññ ýêâèâàëåíòíîñòè íàïðàâëåííûõ îòðåçêîâ íàçûâàåòñÿ ñâîáîäíûì âåêòîðîì, èëè, êîðî÷å, âåêòîðîì.Ñîãëàñíî îïðåäåëåíèþ, ñâîáîäíûé âåêòîð ~a ñîäåðæèò âñå ýêâèâàëåíòíûå ìåæäó ñîáîé íàïðàâëåííûå îòðåçêè. Ïðè ýòîì äëÿ ëþáîé òî÷êè A ñóùåñòâóåò åäèíñòâåííàÿ−→òî÷êà B òàêàÿ, ÷òî AB ∈ ~a.
 ÷àñòíîñòè, ïðè ôèêñèðîâàííîé ñèñòåìå êîîðäèíàò âñåãäàèìååòñÿ îäèí è òîëüêî îäèí ðàäèóñ-âåêòîð, ïðèíàäëåæàùèé ~a.Ïóñòü V ìíîæåñòâî âñåõ òî÷åê ãåîìåòðè÷åñêîãî ïðîñòðàíñòâà. Òîãäà âåêòîð ~açàäàåò ñëåäóþùåå âçàèìíî-îäíîçíà÷íîå îòîáðàæåíèå V → V : òî÷êà A ∈ V ïåðåõîäèò−→â òî÷êó B ∈ V òàêóþ, ÷òî AB ∈ ~a. Òàêîå îòîáðàæåíèå íàçûâàåòñÿ ïàðàëëåëüíûìïåðåíîñîì, èëè ñäâèãîì íà âåêòîð ~a.−→Òðàäèöèîííî äîïóñêàåìûé ýëåìåíò âîëüíîñòè â îáîçíà÷åíèÿõ: âìåñòî AB ∈ ~a ïðè−→íÿòî ïèñàòü ~a = AB (âåêòîð êàê êëàññ ýêâèâàëåíòíîñòè îòîæäåñòâëÿåòñÿ ñ ëþáûì åãîïðåäñòàâèòåëåì).9.5Ëèíåéíûå îïåðàöèè íàä âåêòîðàìè−→−→Ñóììà âåêòîðîâ: ïóñòü AB ∈ ~a è BC ∈ ~b, òîãäà ~c = ~a + ~b îïðåäåëÿåòñÿ êàê âåêòîð,−→ïîðîæäåííûé íàïðàâëåííûì îòðåçêîì AC .Âàæíî, ÷òî ïîëó÷àåìûé òàêèì îáðàçîì âåêòîð ~c íå çàâèñèò îò âûáîðà òî÷êè A.−→−→ ñàìîì äåëå, ïóñòü P Q ∈ ~a è QR ∈ ~b.
Òîãäà èç ðàâåíñòâà òðåóãîëüíèêîâ 4ABC−→è 4P QR âûòåêàåò ðàâåíñòâî äëèí è ñîíàïðàâëåííîñòü íàïðàâëåííûõ îòðåçêîâ AC è−→P R, à çíà÷èò, è èõ ðàâåíñòâî.Ìíîæåñòâî ñâîáîäíûõ âåêòîðîâ îòíîñèòåëüíî îïåðàöèè ñëîæåíèÿ âåêòîðîâ îáðàçóåò−→àáåëåâó ãðóïïó. Ðîëü åäèíè÷íîãî ýëåìåíòà èãðàåò íóëåâîé âåêòîð ~0 = AA. Äëÿ ~a =Å. Å. Òûðòûøíèêîâ59−→−→AB îáðàòíûì ýëåìåíòîì ÿâëÿåòñÿ ~b = BA.  äàííîì êîíòåêñòå âåêòîð ~b íàçûâåòñÿïðîòèâîïîëîæíûì âåêòîðîì äëÿ ~a è îáîçíà÷àåòñÿ ~b = −~a.−→Óìíîæåíèå âåêòîðà íà ÷èñëî: ïóñòü AB ∈ ~a, òîãäà α ~a îïðåäåëÿåòñÿ êàê âåêòîð,−→ïîðîæäàåìûé íàïðàâëåííûì îòðåçêîì AC , êîòîðûé èìååò äëèíó |AC| = |α| |AB| è,−→åñëè α 6= 0, ÿâëÿåòñÿ îäèíàêîâî íàïðàâëåííûì ñ AB ïðè α > 0 è ïðîòèâîïîëîæíîíàïðàâëåííûì ïðè α < 0. Íåñëîæíî óáåäèòüñÿ â òîì, ÷òî âåêòîð α ~a íå çàâèñèò îòâûáîðà òî÷êè A.Íåñëîæíî ïðîâåðèòü, ÷òî α (β ~a) = (αβ) ~a äëÿ ëþáûõ âåùåñòâåííûõ ÷èñåë α, β .Ïîëåçíî òàêæå çàìåòèòü, ÷òî 1 · ~a = ~a, à (−1) · ~a åñòü âåêòîð, ïðîòèâîïîëîæíûé ê ~a.Êðîìå òîãî, îïåðàöèè ñëîæåíèÿ âåêòîðîâ è óìíîæåíèÿ âåêòîðà íà ÷èñëî ñâÿçàíûñëåäóþùèìè çàêîíàìè äèñòðèáóòèâíîñòè:(α + β) ~a = (α ~a) + (β ~a),9.6α (~a + ~b) = (α ~a) + (α ~b).Êîîðäèíàòû âåêòîðàÏóñòü ôèêñèðîâàíà íåêîòîðàÿ àôôèííàÿ ñèñòåìà êîîðäèíàò.
Êàê óæå îòìå÷àëîñü, êàæäîìó ñâîáîäíîìó âåêòîðó ñîîòâåòñòâóåò îäèí è òîëüêî îäèí ðàäèóñ-âåêòîð. Åãî êîîðäèíàòû è áóäåì íàçûâàòü êîîðäèíàòàìè äàííîãî ñâîáîäíîãî âåêòîðà.Ïóñòü O íà÷àëî ñèñòåìû êîîðäèíàò ñ ÷èñëîâûìè îñÿìè l1 , l2 , l3 è òî÷êàìè X ∈ l1 ,Y ∈ l2 , Z ∈ l3 , ñîîòâåòñòâóþùèìè ÷èñëó 1 íà äàííûõ îñÿõ. Ñèñòåìà âåêòîðîâ−→~e1 = OX,−→~e2 = OY ,−→~e3 = OZíàçûâàåòñÿ äëÿ äàíííîé ñèñòåìû êîîðäèíàò áàçèñíîé (èíîãäà òàêæå ðåïåðíîé).Íåïîñðåäñòâåííî èç îïðåäåëåíèÿ êîîðäèíàò òî÷êè è ëèíåéíûõ îïåðàöèé íàä âåêòîðàìè âûòåêàåò ñëåäóþùåå−→Óòâåðæäåíèå 1. Ïóñòü x, y, z êîîðäèíàòû âåêòîðà ~a = OA â ñèñòåìå êîîðäèíàòñ áàçèñíûìè âåêòîðàìè e~1 , e~2 , e~3 .
 ýòîì è òîëüêî â ýòîì ñëó÷àå èìååò ìåñòîðàçëîæåíèå~a = x ~e1 + y ~e2 + z ~e3 .Âåêòîðû x ~e1 , y ~e2 , z ~e3 íàçûâàþòñÿ ïðîåêöèÿìè âåêòîðà ~a íà ïðÿìûå l1 , l2 , l3 (îíè,êàê ëåãêî âèäåòü, íå çàâèñÿò îò ñïîñîáà ïðåâðàùåíèÿ ïðÿìûõ â ÷èñëîâûå îñè).−→−→Óòâåðæäåíèå 2. Ïóñòü xa , ya , za è xb , yb , zb êîîðäèíàòû âåêòîðîâ ~a = OA è ~b = OB ,ñîîòâåòñòâåííî. Òîãäà âåêòîð ~c = ~a + ~b èìååò êîîðäèíàòûxc = xa + xb ,y c = ya + yb ,zc = za + zb ,à âåêòîð d~ = α ~a äëÿ ëþáîãî âåùåñòâåííîãî ÷èñëà α èìååò êîîðäèíàòûx d = α xa ,y d = α ya ,zd = α za .60Ëåêöèÿ 9Äëÿ äîêàçàòåëüñòâà äîñòàòî÷íî óñòàíîâèòü, ÷òî ïðîåêöèÿ ñóììû âåêòîðîâ äëÿ êàæäîé îñè åñòü ñóììà ïðîåêöèé äàííûõ âåêòîðîâ, à ïðîåêöèÿ âåêòîðà, óìíîæåííîãî íà÷èñëî, åñòü óìíîæåííàÿ íà ýòî ÷èñëî ïðîåêöèÿ äàííîãî âåêòîðà.Çàäà÷à.Ïóñòüöåíòðîì â òî÷êåÇàäà÷à.9.7O.A1 , .
. . , An âåðøèíû ïðàâèëüíîãî−→Äîêàæèòå, ÷òî−→−→.n-óãîëüíèêà,−→ òåòðàýäðåABCDâïèñàííîãî â îêðóæíîñòü ñOA1 + ... + OAn = 0íàéäèòå òî÷êóMòàêóþ, ÷òî−→−→−→−→MA + MB + MC + MD = 0 .Èçîìîðôèçì è ëèíåéíàÿ çàâèñèìîñòüÏóñòü V ìíîæåñòâî âñåõ ñâîáîäíûõ âåêòîðîâ.
Êàæäûé ñâîáîäíûé âåêòîð ìîæíîîòîæäåñòâèòü ñ ñîîòâåòñòâóþùèì åìó ðàäèóñ-âåêòîðîì, à êàæäûé ðàäèóñ-âåêòîð âèäà−→OA ñ òî÷êîé A ãåîìåòðè÷åñêîãî ïðîñòðàíñòâà.Óòâåðæäåíèå 2 ïîçâîëÿåò óñòàíîâèòü òàêîå âçàèìíî-îäíîçíà÷íîå ñîîòâåòñòâèå ìåæäó ìíîæåñòâîì ñâîáîäíûõ âåêòîðîâ V è ìíîæåñòâîì ìàòðèö-ñòîëáöîâ R3 , ïðè êîòîðîì ñîõðàíÿþòñÿ îïåðàöèè ñëîæåíèÿ âåêòîðîâ è óìíîæåíèÿ âåêòîðîâ íà ÷èñëà: åñëè~a ↔ a ∈ R3 è ~b ↔ b ∈ R3 , òî~a + ~b ↔ a + b,α ~a ↔ α a.Âçàèìíî-îäíîçíà÷íûå îòîáðàæåíèÿ, ñîõðàíÿþùèå îïåðàöèè, ïðèíÿòî íàçûâàòü èçîìîðôèçìàìè, à ìíîæåñòâà, ìåæäó êîòîðûìè òàêîå ñîîòâåòñòâèå óñòàíîâëåíî, èçîìîðôíûìè. Òàêèì îáðàçîì, ìíîæåñòâî ñâîáîäíûõ âåêòîðîâ V èçîìîðôíî R3 .Ïîíÿòèÿ ëèíåéíîé çàâèñèìîñòè è ëèíåéíîé íåçàâèñèìîñòè ñèñòåì ñâîáîäíûõ âåêòîðîâ ââîäÿòñÿ òî÷íî òàê æå, êàê è äëÿ ìàòðèö-ñòîëáöîâ.
Òî æå îòíîñèòñÿ ê ïîíÿòèþëèíåéíûõ îáîëî÷åê. Ó÷èòûâàÿ èçîìîðôèçì, â ñëó÷àå ñâîáîäíûõ âåêòîðîâ ìû ìîæåìèñïîëüçîâàòü ðåçóëüòàòû óæå âûïîëíåííîãî äëÿ ìàòðèö-ñòîëáöîâ èññëåäîâàíèÿ ëèíåéíîé çàâèñèìîñòè è ñâÿçàííûõ ñ íåé ïîíÿòèé áàçèñà è ðàçìåðíîñòè ëèíåéíîé îáîëî÷êè.Ëåãêî âèäåòü, ÷òî ââåäåííûå âûøå áàçèñíûå âåêòîðû ~e1 , ~e2 , ~e3 ÿâëÿþòñÿ ëèíåéíî íåçàâèñèìûìè, à âñå ìíîæåñòâî ñâîáîäíûõ âåêòîðîâ åñòü èõ ëèíåéíàÿ îáîëî÷êà:V = L(~e1 , ~e2 , ~e3 ),9.8dim V = 3.Êîëëèíåàðíûå è êîìïëàíàðíûå âåêòîðûÎïðåäåëåíèå 1. Âåêòîðû íàçûâàþòñÿ êîëëèíåàðíûìè, åñëè cðåäè ïîðîæäàþùèõ èõíàïðàâëåííûõ îòðåçêîâ èìåþòñÿ ïðèíàäëåæàùèå îäíîé ïðÿìîé.Îïðåäåëåíèå 2. Âåêòîðû íàçûâàþòñÿ êîìïëàíàðíûìè, åñëè ñðåäè ïîðîæäàþùèõ èõíàïðàâëåííûõ îòðåçêîâ èìåþòñÿ ïðèíàäëåæàùèå îäíîé ïëîñêîñòè.Ëèíåéíàÿ îáîëî÷êà ëþáîé ñèñòåìû êîëëèíåàðíûõ âåêòîðîâ, ñîäåðæàùåé õîòÿ áûîäèí íåíóëåâîé âåêòîð, èìååò ðàçìåðíîñòü 1. Âåðíî è îáðàòíîå: âñå âåêòîðû èç ëèíåéíîéîáîëî÷êè ðàçìåðíîñòè 1 ÿâëÿþòñÿ êîëëèíåàðíûìè.Ëèíåéíàÿ îáîëî÷êà ëþáîé ñèñòåìû êîìïëàíàðíûõ âåêòîðîâ, â êîòîðîé èìååòñÿ õîòÿáû îäíà ïàðà íåêîëëèíåàðíûõ âåêòîðîâ, èìååò ðàçìåðíîñòü 2.
Âñå âåêòîðû èç ëèíåéíîéîáîëî÷êè ðàçìåðíîñòè 2 ÿâëÿþòñÿ êîìïëàíàðíûìè.Áóäåì îòîæäåñòâëÿòü ñâîáîäíûå âåêòîðû ñ ïîðîæäàþùèìè èõ ðàäèóñ-âåêòîðàìè.Òîãäà ìíîæåñòâî âñåõ âåêòîðîâ, êîëëèíåàðíûõ çàäàííîìó âåêòîðó, ïðåäñòàâëÿåò ñîáîéÅ. Å. Òûðòûøíèêîâ61ïðÿìóþ, ïðîõîäÿùóþ ÷åðåç íà÷àëî êîîðäèíàò. Ìíîæåñòâî âñåõ âåêòîðîâ, êîìïëàíàðíûõ çàäàííîé ïàðå íåêîëëèíåàðíûõ âåêòîðîâ, ïðåäñòàâëÿåò ñîáîé ïðîõîäÿùóþ ÷åðåçíà÷àëî êîîîðäèíàò ïëîñêîñòü.Ïðÿìàÿ l = AB , ïðîõîäÿùàÿ ÷åðåç òî÷êè A è B , ïðåäñòàâëÿåò ñîáîé ìíîæåñòâîòî÷åê (ðàäèóñ-âåêòîðîâ) ñëåäóþùåãî âèäà:−→−→−→l = {M : OM = OA + tAB, t ∈ R}.(1)−→Âåêòîð AB (ïàðàëëåëüíûé ïðÿìîé l) íàçûâàåòñÿ íàïðàâëÿþùèì âåêòîðîì äëÿ l.Ïëîñêîñòü π , ïðîõîäÿùàÿ ÷åðåç òðè íå ëåæàùèå íà îäíîé ïðÿìîé òî÷êè A, B, C , åñòüìíîæåñòâî òî÷åê (ðàäèóñ-âåêòîðîâ) âèäà−→−→−→−→π = {M : OM = OA + uAB + v AC, u, v ∈ R}.9.9(2)Ïðÿìàÿ íà ïëîñêîñòè êà÷åñòâå ãåîìåòðè÷åñêîãî ïðîñòðàíñòâà ÷àñòî ðàññìàòðèâàåòñÿ ïëîñêîñòü.
 ýòîìñëó÷àå ñèñòåìà êîîðäèíàò ñîñòîèò èç äâóõ îñåé è óñòàíàâëèâàåò âçàèìíî-îäíîçíà÷íîåñîîòâåòñòâèå ìåæäó ñèñòåìàìè äâóõ âåùåñòâåííûõ ÷èñåë (x, y) è òî÷êàìè (ðàäèóñâåêòîðàìè) ïëîñêîñòè.Ïóñòü A è B âåùåñòâåííûå ÷èñëà, íå ðàâíûå íóëþ îäíîâðåìåííî. Óðàâíåíèå âèäàAx + By + C = 0(∗)íàçûâàåòñÿ îáùèì óðàâíåíèåì ïðÿìîé íà ïëîñêîñòè.Òåîðåìà. Ïóñòü íà ïëîñêîñòè ôèêñèðîâàíà àôôèííàÿ ñèñòåìà êîîðäèíàò. Ìíîæåñò-âî òî÷åê ñ êîîðäèíàòàìè x, y , óäîâëåòâîðÿþùèìè óðàâíåíèþ (∗), ïðåäñòàâëÿåò ñîáîéïðÿìóþ, è ïðè ýòîì ëþáàÿ ïðÿìàÿ ìîæåò áûòü çàäàíà óðàâíåíèåì âèäà (∗).Äîêàçàòåëüñòâî. Ïóñòü l ïðÿìàÿ, ïðîõîäÿùàÿ ÷åðåç òî÷êè (x0 , y0 ) è (x1 , y1 ). Òîãäà,ñîãëàñíî (1), ïðÿìàÿ l ñîñòîèò èç òî÷åê (x, y) òàêèõ, ÷òîx = x0 + tpx ,y = y0 + tpy ,(∗∗)ãäå t ∈ R è px = x1 −x0 , py = y1 −y0 .
Îòñþäà (êàê îïðåäåëèòåëü ñ ëèíåéíî çàâèñèìûìèñòîëáöàìè)x − x0 pxdet= 0.y − y0 py⇒ Ax + by + C = 0, ãäå A = py , B = −px , C = −py x0 + px y0 .Òåïåðü ðàññìîòðèì ìíîæåñòâî òî÷åê (x, y), óäîâëåòâîðÿþùèõ óðàâíåíèþ (∗). Î÷åâèäíî, îíî ñîâïàäàåò ñ ìíîæåñòâîì âñåõ ðåøåíèé ñèñòåìû ëèíåéíûõ àëãåáðàè÷åñêèõóðàâíåíèé, ñîñòîÿùåé èç îäíîãî óðàâíåíèÿ xA B= −C.yÏîñêîëüêó õîòÿ áû îäíî èç ÷èñåë A, B îòëè÷íî îò íóëÿ, ðàíã ìàòðèöû êîýôôèöèåíòîâðàâåí 1.
Ïîýòîìó îáùåå ðåøåíèå äàííîé ñèñòåìû èìååò âèä (∗∗), ãäå (x0 , y0 )> ëþáîåôèêñèðîâàííîå ÷àñòíîå ðåøåíèå, à âåêòîð (px , py )> îáðàçóåò ôóíäàìåíòàëüíóþ ñèñòåìóðåøåíèé ñîîòâåòñòâóþùåé îäíîðîäíîé ñèñòåìû (â äàííîì ñëó÷àå ñîñòîÿùåé èç îäíîãîâåêòîðà). 1 21 Êîíå÷íî, â äàííîì ÷àñòíîì ñëó÷àå ýòîò ôàêò ëåãêî äîêàçûâàåòñÿ è áåç ññûëîê íà îáùóþ òåîðèþ.62Ëåêöèÿ 99.10Ïëîñêîñòü â ïðîñòðàíñòâåÏóñòü A, B , C âåùåñòâåííûå ÷èñëà, íå ðàâíûå íóëþ îäíîâðåìåííî. Óðàâíåíèå âèäàAx + By + Cz + D = 0(#)íàçûâàåòñÿ îáùèì óðàâíåíèåì ïëîñêîñòè.Òåîðåìà. Ïóñòü â ïðîñòðàíñòâå ôèêñèðîâàíà àôôèííàÿ ñèñòåìà êîîðäèíàò.
Ìíîæåñòâî òî÷åê ñ êîîðäèíàòàìè x, y, z , óäîâëåòâîðÿþùèìè óðàâíåíèþ (#), ïðåäñòàâëÿåò ñîáîéïëîñêîñòü, è ïðè ýòîì ëþáàÿ ïëîñêîñòü ìîæåò áûòü çàäàíà óðàâíåíèåì âèäà (#).Äîêàçàòåëüñòâî. Ïóñòü π ïëîñêîñòü, ïðîõîäÿùàÿ ÷åðåç òî÷êè (x0 , y0 , z0 ), (x1 , y1 , z1 ),(x2 , y2 , z2 ). Òîãäà, ñîãëàñíî (2), ïëîñêîñòü π ñîñòîèò èç òî÷åê (x, y, z) òàêèõ, ÷òî x = x0 + upx + vqx ,y = y0 + upy + vqy ,(##)z = z0 + upz + vqz ,ãäå u, v ïðîèçâîëüíûå âåùåñòâåííûå ÷èñëà,(px , py , pz ) = (x1 − x0 , y1 − y0 , z1 − z0 ),Îòñþäà(qx , qy , qz ) = (x2 − x0 , y2 − y0 , z2 − z0 ).x − x 0 p x qxdet y − y0 py qy = 0.z − z0 pz qzÊàê óðàâíåíèå îòíîñèòåëüíî x, y, z , î÷åâèäíî, ýòî óðàâíåíèå èìååò âèä (#).Òåïåðü ðàññìîòðèì ìíîæåñòâî òî÷åê (x, y, z), óäîâëåòâîðÿþùèõ óðàâíåíèþ (#).
Îíîñîâïàäàåò ñ ìíîæåñòâîì âñåõ ðåøåíèé ñèñòåìû ëèíåéíûõ àëãåáðàè÷åñêèõ óðàâíåíèé,ñîñòîÿùåé èç îäíîãî óðàâíåíèÿ xA B C y = 0.zÎòëè÷èå îò íóëÿ õîòÿ áû îäíîãî èç ÷èñåë A, B, C îçíà÷àåò, ÷òî ìàòðèöà êîýôôèöèåíòîâèìååò ðàíã 1. Çíà÷èò, îáùåå ðåøåíèå èìååò âèä (##), ãäå (x0 , y0 , z0 )> íåêîòîðîå ÷àñòíîå ðåøåíèå, à âåêòîðû (px , py , pz )> è (qx , qy , qz )> îáðàçóþò ôóíäàìåíòàëüíóþ ñèñòåìóðåøåíèé ñîîòâåòñòâóþùåé îäíîðîäíîé ñèñòåìû. 29.11Ïðåîáðàçîâàíèå êîîðäèíàòÏóñòü èìåþòñÿ äâå àôôèííûå ñèñòåìû êîîðäèíàò: ïåðâàÿ ñ öåíòðîì â òî÷êå O è áàçèñíûìè âåêòîðàìè e1 , e2 , e3 , âòîðàÿ ñ öåíòðîì â òî÷êå O0 è áàçèñíûìè âåêòîðàìè e01 , e02 , e03 .Çàïèøåìe01e02e03= p11 e1 + p21 e2 + p31 e3 ,= p12 e1 + p22 e2 + p32 e3 ,= p13 e1 + p23 e2 + p33 e3 ,è îáðàçóåì òàê íàçûâàåìóþ ìàòðèöó ïåðåõîäà (îò ïåðâîé áàçèñíîé ñèñòåìû êî âòîðîé)"#P =p11p21p31p12p22p32p13p23 .p33Å.