Главная » Просмотр файлов » 1-Погрешности измерений

1-Погрешности измерений (1109779)

Файл №1109779 1-Погрешности измерений (Методические разработки к лабораторным работам)1-Погрешности измерений (1109779)2019-04-28СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСТЕТимени М. В. ЛомоносоваФизический факультеткафедра общей физики и физики конденсированного состоянияМетодическая разработкапо общему физическому практикумуПОГРЕШНОСТИ ИЗМЕРЕНИЙДоцент Пустовалов Г. Е.Москва - 2012Подготовил методическое пособие к изданию доц. Авксентьев Ю.И.2ПОГРЕШНОСТИ ИЗМЕРЕНИЙ1. ВВЕДЕНИЕПонятие о погрешностях. Измерения не могут быть выполненыабсолютно точно. Всегда имеется некоторая неопределенность в значенииизмеряемой величины.

Эта неопределенность характеризуется погрешностью - отклонением измеренного значения величины от ее истинного значения. Приведем некоторые из причин, приводящих к появлению погрешностей.1. Ограниченная точность измерительных приборов.2. Влияние на измерение неконтролируемых изменений внешних условий (напряжения в электрической сети, температуры и т.д.)3.

Действия экспериментатора (включение секундомера с некоторымзапаздыванием, различное размещение глаз по отношению к шкале прибора и т.п.).4. Неполное соответствие измеряемого объекта той абстракции, которая принята для измеряемой величины (например, при измерении объемапластинка считается параллелепипедом, в то время как у нее могут быть закругления на ребрах).5. Не строгость законов, которые используются для нахождения измеряемой величины или лежат в основе устройства прибора.Классификация погрешностей. В зависимости от причин, приводящих к возникновению погрешностей, различают их следующие виды.Промахи - грубые ошибки в значениях измеряемой величины.Систематические погрешности - такие погрешности, которыесоответствуют отклонению измеряемой величины от ее истинного значениявсегда в одну сторону - либо в сторону завышения, либо в сторону занижения.

При повторных измерениях в тех же условиях величина погрешностиостается неизменной. При закономерных изменениях условий погрешностьтакже меняется закономерно.Случайные погрешности. Даже при очень строгом соблюденииодних и тех же условий повторные измерения одной и той же величины,как правило, приводят к значениям, отличающимся друг от друга, Эта разница в значениях может вызываться причинами самой различной природы.Отклонения от истинного значения при этом могут быть как в сторону увеличения, так и в сторону уменьшения, причем величина отклонения такжеможет быть различной.3Приборные погрешности - погрешности, связанные с точностьюизготовления прибора, используемого для измерения.

Они могут носить каксистематический, так и случайный характер.В зависимости от того, каким способом получается значение измеряемой величины, различают погрешности прямых (непосредственных) икосвенных измерений. Прямыми называются измерения, в результате которых значение измеряемой величины получается сразу по шкале прибора(например, измерение длины штангенциркулем) или при помощи какоголибо способа сравнения с эталоном (например, взвешивание на рычажныхвесах). Косвенные - это такие измерения, когда для нахождения некоторойфизической величины сначала измеряют прямыми измерениями несколькодругих величин, а затем по их значениям с помощью каких-либо формулвычисляют значение искомой величины.

Одну и ту же величину частоможно найти путем как прямых, так и косвенных измерений. Например,скорость автомобиля может быть определена по спидометру (прямое измерение) или найдена делением пройденного расстояния на время движения(косвенное измерение).2 ПРОМАХИПромахи, как правило, вызываются невнимательностью (например,при измерении диаметра отверстия штангенциркулем часто забываютучесть толщину его ножек). Они могут возникать также вследствие неисправности прибора.

От промахов не застрахован никто, однако по мереприобретения экспериментальных навыков вероятность промахов заметноуменьшается.3. СИСТЕМАТИЧЕСКИЕ ПОГРЕШНОСТИСистематические погрешности могут возникать по ряду причин. Вотнекоторые из них.1. Несоответствие прибора эталону (например, пластмассовые линейкис течением времени обычно укорачиваются на несколько миллиметров, секундомер может иметь неправильный ход - спешить или отставать на несколько секунд в сутки).2.

Неправильное использование прибора (например, перед взвешиванием не установлено равновесие ненагруженных весов).43. Пренебрежение поправками, которые нужно ввести в результатыизмерения для достижения требуемой точности (например, не учтена зависимость температуры кипения воды от атмосферного давления).Систематические погрешности, обусловленные некоторыми из этихпричин, могут быть сведены к минимуму проверкой приборов, их тщательной установкой, анализом необходимых поправок и т.д. Погрешности, вызванные некоторыми причинами, могут быть скрыты в течение длительного времени и обычно обнаруживаются при нахождении тех же физическихвеличин принципиально другими методами. Анализ подобного рода систематических погрешностей может в ряде случаев привести к открытию неизвестных ранее явлений природы.В учебных лабораториях систематические погрешности обычно игнорируются и анализ их не производится.4.

СЛУЧАЙНЫЕ ПОГРЕШНОСТИСлучайные погрешности вызываются большим числом неконтролируемых причин, влияющих на процесс измерения. Такие причины могутбыть объективными (неровности на поверхности измеряемого предмета;дуновение воздуха, ведущее к изменению температуры; скачкообразноеизменение напряжения электрической сети и т.п.) и субъективными (разнаясила зажима предмета между ножками штангенциркуля, неодинаковое расположение глаза по отношению к шкале прибора, различное запаздываниепри включении секундомера и т.п.). Эти причины могут сочетаться в различных комбинациях, вызывая то увеличение, то уменьшение значения измеряемой величины.

Поэтому при измерениях одной и той же величинынесколько раз получается, как правило, целый ряд значений этой величины,отличающихся от истинного значения случайным образом.Закономерности, описывающие поведение случайных величин, изучаются теорией вероятностей. Под вероятностью мы здесь будемподразумевать отношение числа случаев, удовлетворяющих какому-либоусловию, к общему числу случаев, если общее число случаев очень велико(стремится к бесконечности). Максимальное значение вероятности равноединице (все случаи удовлетворяют заданному условию).

При описаниислучайных погрешностей обычно используются следующие предположения.1. Погрешности могут принимать непрерывный ряд значений.2. Большие отклонения измеренных значений от истинного значенияизмеряемой величины встречаются реже (менее вероятны), чем малые.3. Отклонения в обе стороны от истинного значения равновероятны.5Эти предположения справедливы не всегда. Опыт, однако, показывает,что все же в подавляющем большинстве случаев они выполняются достаточно хорошо.Среднее арифметическое. Пусть при измерении физической величины а получено n значений: a1, a2, ..., ai , ..., an .

Предполагается, что среднееарифметическое этих значений (обозначаемое чертой над буквой)aain(1)стремится к истинному значению измеряемой величины, если n стремится кбесконечности. При конечном числе измерений среднее арифметическоепредставляет собой наиболее вероятное значение измеряемой величины. Теория вероятностей позволяет оценить возможное отклонение среднего арифметического от истинного значения измеряемой величины.Погрешности отдельных измерений. За меру погрешности значенияai , полученного при отдельном измерении, принимают разность междуэтим значением и истинным значением а. Но так как истинное значение анеизвестно то вместо него берут среднее арифметическое a серии измерений. Разностиa1 a1 a ,a2 a2 a ,...................an an a(2)мы будем называть абсолютными погрешностями отдельных измерений.Среди погрешностей a1, a2, ..., an встречаются как положительные, таки отрицательные погрешности.

Легко показать, что алгебраическая суммаабсолютных погрешностей равна нулю.Средней квадратичной погрешностью, или стандартным отклонением, отдельного измерения называется величинаSaia12a22 ...n 1an2ai2.n 1(3)Здесь n - число измеренных значений. Заметим, что для случая, когдапроведено лишь одно измерение (n = 1), формула (3) неприменима, и дляоценки погрешности следует пользоваться другими соображениями.

Однимизмерением ограничиваются, если заведомо известно, что приборная погрешность значительно превышает случайную погрешность.6Стандартное отклонение имеет следующий смысл. При большом числеизмерений вероятность того, что модуль значения ai не превышаетSai или, что то же самое, что значение ai лежит в пределах от a Sai доaSai , составляет 0,672/3. Иначе говоря, если величина a измерена, на-пример, 100 раз, то около 67 случаев будет таких, что aSai < ai < aSai .Погрешность среднего арифметического. Средняя квадратичная погрешность Sai отдельного измерения, определяемая формулой (3), свозрастанием n стремится к некоторой определенной величине (собственнопогрешностью согласно теории вероятности и является этот предел). С другой стороны, среднее арифметическое a по мере увеличения n должноприближаться к истинному значению а (если, конечно, устранены систематические погрешности).

Характеристики

Тип файла
PDF-файл
Размер
441,47 Kb
Тип материала
Предмет
Высшее учебное заведение

Тип файла PDF

PDF-формат наиболее широко используется для просмотра любого типа файлов на любом устройстве. В него можно сохранить документ, таблицы, презентацию, текст, чертежи, вычисления, графики и всё остальное, что можно показать на экране любого устройства. Именно его лучше всего использовать для печати.

Например, если Вам нужно распечатать чертёж из автокада, Вы сохраните чертёж на флешку, но будет ли автокад в пункте печати? А если будет, то нужная версия с нужными библиотеками? Именно для этого и нужен формат PDF - в нём точно будет показано верно вне зависимости от того, в какой программе создали PDF-файл и есть ли нужная программа для его просмотра.

Список файлов лабораторной работы

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6366
Авторов
на СтудИзбе
310
Средний доход
с одного платного файла
Обучение Подробнее