Диссертация (1097926), страница 18
Текст из файла (страница 18)
ÌÅÒÎÄÅÊÎÍÑÒÓÊÖÈÈ ÏÎÒÅÍÖÈÀËÀ4.1. Çàäà÷à ðåêîíñòðóêöèè ïîòåíöèàëàÊàê óæå îòìå÷àëîñü âî Ââåäåíèè, íàáëþäàåìàÿ ýâîëþöèÿ Âñåëåííîé ìîæåò áûòü îïèñàíà ñ ïîìîùüþ îíîâîé ïðîñòðàíñòâåííî ïëîñêîé ìåòðèêè ÔËÓ è êîñìîëîãè÷åñêèõ âîçìóùåíèé. Ìîäåëè ñî ñêàëÿðíûìè ïîëÿìè ÿâëÿþòñÿ ïðîñòåéøèìè ìîäåëÿìè, ïðèãîäíûìè äëÿ îïèñàíèÿ òàêîãî òèïà ýâîëþöèè.Èìåííî ïîýòîìó ñêàëÿðíûå ïîëÿ èãðàþò ñóùåñòâåííóþ ðîëü â ñîâðåìåííîéêîñìîëîãèè. Êîñìîëîãè÷åñêèå ìîäåëè ñî ñêàëÿðíûìè ïîëÿìè ïðèîáðåëè áîëüøóþ ïîïóëÿðíîñòü â ïîñëåäíèå äåñÿòèëåòèÿ êàê â êà÷åñòâå îïèñàíèÿ ýâîëþöèè ðàííåé Âñåëåííîé [15, 16, 18, 21, 37, 38℄, òàê è â êà÷åñòâå ìîäåëåé ò¼ìíîéýíåðãèè [83, 86, 89, 163℄. Îòìåòèì, îäíàêî, ÷òî êîñìîëîãè÷åñêèå ìîäåëè ñ âåêòîðíûìè ïîëÿìè è ïîëÿìè ßíãàÌèëëñà òàêæå ðàçâèâàþòñÿ [299311℄, õîòÿ èíå ñòîëü èíòåíñèâíî.Åñëè ìîäåëü âêëþ÷àåò â ñåáÿ òîëüêî îäèí òèï êîñìè÷åñêîé æèäêîñòè ñóðàâíåíèåì ñîñòîÿíèÿ p = w̺, òî â ìåòðèêå ÔËÓ ïàðàìåòð ñîñòîÿíèÿ ýòîéæèäêîñòè w è ïàðàìåòð Õàááëà H ñâÿçàíû ñëåäóþùèì îáðàçîì:w = −1−2Ḣ.3H 2(4.1)Èç ñîîòíîøåíèÿ (4.1) âèäíî, ÷òî ïîñòîÿííîìó H ñîîòâåòñòâóåò w = − 1, òîåñòü ò¼ìíàÿ ýíåðãèÿ, îïèñûâàåìàÿ äîáàâëåíèåì ïîëîæèòåëüíîé êîñìîëîãè÷åñêîé ïîñòîÿííîé â äåéñòâèå èëüáåðòàÝéíøòåéíà.
×òîáû ïîëó÷èòü èçìåíÿ122þùèéñÿ âî âðåìåíè ïàðàìåòð Õàááëà, ìîæíî äîáàâèòü ñêàëÿðíûå ïîëÿ â êîñìîëîãè÷åñêóþ ìîäåëü. Äëÿ êîñìîëîãè÷åñêîé ìîäåëè ñ ìèíèìàëüíî ñâÿçàííûìñêàëÿðíûì ïîëåì ñî ñòàíäàðòíûì êèíåòè÷åñêèì ÷ëåíîì ïîëó÷àåì w > −1è ïàðàìåòð Õàááëà ÿâëÿåòñÿ ìîíîòîííî óáûâàþùåé óíêöèåé. ×òîáû ïîëó÷èòü âîçðàñòàíèå èëè íåìîíîòîííîå ïîâåäåíèå ïàðàìåòðà Õàááëà, íóæíî ëèáîäîáàâèòü àíòîìíîå ñêàëÿðíîå ïîëå, ëèáî ðàññìîòðåòü ìîäåëü ñî ñêàëÿðíûìïîëåì, íåìèíèìàëüíî âçàèìîäåéñòâóþùèì ñ ãðàâèòàöèåé [232, 247℄, èëè ðàññìîòðåòü ñêàëÿðíîå ïîëå, ëàãðàíæèàí êîòîðîãî âêëþ÷àåò ïðîèçâîäíûå âòîðîãî ïîðÿäêà [101℄.Êîëè÷åñòâî èíòåãðèðóåìûõ êîñìîëîãè÷åñêèõ ìîäåëåé ñî ñêàëÿðíûìè ïîëÿìè âåñüìà ìàëî.
Ñàìîé ïîïóëÿðíîé èíòåãðèðóåìîé êîñìîëîãè÷åñêîé ìîäåëüþ ÿâëÿåòñÿ ìîäåëü ñ ìèíèìàëüíî âçàèìîäåéñòâóþùèì ñêàëÿðíûì ïîëåì èýêñïîíåíöèàëüíûì ïîòåíöèàëîì [188, 312315℄. Îáùàÿ êëàññèèêàöèÿ èíòåãðèðóåìûõ êîñìîëîãè÷åñêèõ ìîäåëåé ñî ñêàëÿðíûìè ïîëÿìè, ìèíèìàëüíî âçàèìîäåéñòâóþùèìè ñ ãðàâèòàöèåé, ïðåäëîæåíà è ïîäðîáíî èçó÷åíà â [172℄.Êîñìîëîãè÷åñêèå ìîäåëè ñ ïîëèíîìèàëüíûìè ïîòåíöèàëàìè îáùåãî âèäà íåèíòåãðèðóåìû, áîëåå òîãî, èíîãäà íå òàê ïðîñòî ïîëó÷èòü äàæå ÷àñòíîåðåøåíèå â àíàëèòè÷åñêîé îðìå. Èñïîëüçóÿ ìåòîä ðåêîíñòðóêöèè, ìîæíî ïîñòðîèòü òàêîé ïîòåíöèàë ñêàëÿðíîãî ïîëÿ, ÷òî ðåçóëüòèðóþùàÿ ìîäåëü èìååòòî÷íûå ðåøåíèÿ ñ âàæíûìè èçè÷åñêèìè ñâîéñòâàìè.
Åñëè ïîñòðîåííàÿ êîñìîëîãè÷åñêàÿ ìîäåëü ïðåòåíäóåò íà ðîëü íèçêîýíåðãåòè÷åñêîãî ïðèáëèæåíèÿóíäàìåíòàëüíîé òåîðèè, òî íåîáõîäèìî, ÷òîáû ïîëó÷åííûé ìåòîäîì ðåêîíñòðóêöèè ïîòåíöèàë ïðèíàäëåæàë êëàññó ïîòåíöèàëîâ, ñâÿçàííûõ ñ äàííîéóíäàìåíòàëüíîé òåîðèåé. Îòìåòèì âàæíîñòü àíàëèçà ñòàáèëüíîñòè ïîëó÷åííûõ ðåøåíèé.Èäåÿ ðàññìàòðèâàòü ïàðàìåòð Õàááëà êàê óíêöèþ ñêàëÿðíîãî ïîëÿ èïîëó÷èòü èç óðàâíåíèé Ôðèäìàíà óðàâíåíèå, ïîõîæåå íà óðàâíåíèå àìèëüòîíàßêîáè, áûëà ïðåäëîæåíà â 1990 ãîäó â ñòàòüÿõ [188, 189℄. àññìîòðèì123ãðàâèòàöèîííóþ ìîäåëü, îïèñûâàåìóþ äåéñòâèåì: 2Z√MCPS = d4x −gR − g µν ∂µ φ∂ν φ − V (φ) ,22(4.2)ãäå ïîòåíöèàë V (φ) ÿâëÿåòñÿ äâàæäû äèåðåíöèðóåìîé óíêöèåé ñêàëÿðíîãî ïîëÿ φ, C íåíóëåâàÿ êîíñòàíòà.Ñèñòåìà óðàâíåíèé Ôðèäìàíà, òî åñòü óðàâíåíèé Ýéíøòåéíà äëÿ ìåòðèêè ÔËÓ, ðàâíîñèëüíà ñëåäóþùåé ñèñòåìå:C 2Ḣ = −φ̇ ,2MP213H = 2MP2C 2φ̇ + V2.(4.3)Óðàâíåíèå äëÿ ïîëÿ ïîëó÷àåòñÿ âàðèàöèåé äåéñòâèÿ ïî ïåðåìåííîé ïîëÿ:φ̈ + 3H φ̇ +1 ′V = 0,C(4.4)ãäå øòðèõ îáîçíà÷àåò ïðîèçâîäíóþ ïî φ.
Îòìåòèì, ÷òî óðàâíåíèå (4.4) ÿâëÿåòñÿ ñëåäñòâèåì ñèñòåìû (4.3). Åñëè ìîäåëü âêëþ÷àåò ñòàíäàðòíîå ñêàëÿðíîåïîëå, òî C > 0 è èç ïåðâîãî óðàâíåíèÿ ñèñòåìû (4.3) ñëåäóåò, ÷òî ïàðàìåòðÕàááëà ìîíîòîííî óáûâàåò.Ñèñòåìà (4.3) ñ ïðîèçâîëüíûì ïîòåíöèàëîì V (φ) íå èíòåãðèðóåìà, íîìîæíî ïîñòðîèòü ïîòåíöèàë V (φ) è íàéòè óíêöèþ φ(t), åñëè H(t) çàäàí.Äåéñòâèòåëüíî [316℄, èç ñèñòåìû (4.3) ìîæíî ïîëó÷èòü ñëåäóþùåå óðàâíåíèå:V =MP223H + Ḣ .(4.5)Òàêèì îáðàçîì, äëÿ çàäàííîãî H(t) ïîëó÷àåì V (t).
Èç ïåðâîãî óðàâíåíèÿ ñèñòåìû (4.3) ïîëó÷àåì φ̇(t). Òàê, â ïðèíöèïå, ìû ìîæåì ðåêîíñòðóèðîâàòüïîòåíöèàë V (φ) äëÿ ïðîèçâîëüíîãî ìîíîòîííîãî H(t). Ýòîò ìåòîä ïîçâîëÿåòïîëó÷èòü ìîäåëü ñ òî÷íî çàäàííûì ïîâåäåíèåì ïàðàìåòðà Õàááëà, ïðè ýòîìñëîæíî ïðåäóãàäàòü âèä ïîòåíöèàëà, êîòîðûé ïîëó÷èòñÿ â ðåçóëüòàòå.
Äàííûé ìåòîä íå ïîçâîëÿåò ñòðîèòü òåîðèè, êîòîðûå ìîãóò ïðåäñêàçûâàòü ïîâåäåíèå ïàðàìåòðà Õàááëà, ïîñêîëüêó ëþáîå ìîíîòîííîå ïîâåäåíèå ìîæåò áûòü124îïèñàíî ïðàâèëüíûì ïîäáîðîì ïîòåíöèàëà. Ïðîáëåìà è â òîì, ÷òî ïîñòðîåííîé ïîäîáíûì îáðàçîì ìîäåëè, ñêîðåé âñåãî, áóäåò íå õâàòàòü ðåàëèñòè÷íîñòè. Îáû÷íî, ÷òîáû ïîñòðîèòü êîñìîëîãè÷åñêóþ ìîäåëü, ìîòèâèðîâàííóþóíäàìåíòàëüíîé èçè÷åñêîé òåîðèåé, íåîáõîäèìî ïîëó÷èòü çàäàííóþ îðìó ïîòåíöèàëà. Íàïðèìåð, ñ ïîëåâîé òåîðèåé ñòðóí ñâÿçàíû ìîäåëè ñ ïîëèíîìèàëüíûìè ïîòåíöèàëàìè [117, 216, 217, 222℄.  òî æå âðåìÿ ìû íå ìîæåìïîëó÷èòü çíà÷åíèÿ êîýèöèåíòîâ ýòèõ ýåêòèâíûõ ïîòåíöèàëîâ èç óíäàìåíòàëüíîé òåîðèè.
Èòàê, ìû õîòèì ïîëó÷èòü êîñìîëîãè÷åñêóþ ìîäåëü ñîïðåäåë¼ííûì òî÷íûì ðåøåíèåì è ïîëèíîìèàëüíûì ïîòåíöèàëîì è èññëåäîâàòü ïîâåäåíèå ïàðàìåòðà Õàááëà, êîòîðîå ìîæíî ïîëó÷èòü â òàêîì êëàññåìîäåëåé. Äëÿ ðåøåíèÿ ýòîé ïðîáëåìû ìû èñïîëüçóåì ìåòîä ñóïåðïîòåíöèàëà(ìåòîä óðàâíåíèÿ àìèëüòîíàßêîáè èëè îðìàëèçì ïåðâîãî ïîðÿäêà). Êëþ÷åâûì ìîìåíòîì â äàííîì ïîäõîäå ÿâëÿåòñÿ òî, ÷òî ïàðàìåòð Õàááëà ÿâëÿåòñÿóíêöèåé ñêàëÿðíîãî ïîëÿ φ, íàçûâàåìîé ñóïåðïîòåíöèàëîì, òî åñòüH(t) = W (φ(t)).(4.6)Èñïîëüçóÿ Ḣ = W ′ φ̇, èç ñèñòåìû (4.3) ìû ïîëó÷èì:2MP2 ′W,C2MP4 ′ 222V = 3MP W −W .Cφ̇ = −(4.7)(4.8)Ìåòîä ñóïåðïîòåíöèàëà ïîçâîëÿåò âûáðàòü W (φ) òàê, ÷òî è φ(t), è V (φ)îáëàäàþò òðåáóåìûìè ñâîéñòâàìè.
Óðàâíåíèå (4.7) âñåãäà ðàçðåøèìî â êâàäðàòóðàõ. Ôîðìóëà (4.8) ïîçâîëÿåò íàéòè ïîòåíöèàë V äëÿ çàäàííîãî ñóïåðïîòåíöèàëà W . ýòîé ãëàâå áóäóò ïðåäñòàâëåíû ðåçóëüòàòû ðàáîò [216, 217, 222, 225, 239,240℄, ïîñâÿù¼ííûõ ðåêîíñòðóêöèè ïîòåíöèàëà ñêàëÿðíîãî ïîëÿ, îñíîâàííîé íàìåòîäå ñóïåðïîòåíöèàëà. Äàííûé ìåòîä ðàññìîòðåí äëÿ ñëó÷àÿ ñâÿçàííûõ ñïîëåâîé òåîðèåé ñòðóí ìîäåëåé ñ îäíèì ñêàëÿðíûì ïîëåì [217℄ (ðàçäåë 4.2) è125äâóìÿ ñêàëÿðíûìè ïîëÿìè [216, 222, 225℄ (ðàçäåëû 4.4 è 4.5). Òàêæå îïèñûâàåòñÿ ìîäåëü ñ ò¼ìíîé ìàòåðèåé [215℄ (ðàçäåë 4.3).  ñëåäóþùåé ãëàâå äàííûéìåòîä îáîáùàåòñÿ íà ñëó÷àé ñêàëÿðíîãî ïîëÿ, íåìèíèìàëüíî âçàèìîäåéñòâóþùåãî ñ ãðàâèòàöèåé [232℄ (ðàçäåë 5.2).4.2. Ìîäåëü ñ àíòîìíûì ñêàëÿðíûì ïîëåì4.2.1.
Ñâÿçü ñ òåîðèåé ñòðóí íàñòîÿùåå âðåìÿ îäèí èç âîçìîæíûõ ñöåíàðèåâ ðàçâèòèÿ Âñåëåííîéñâÿçàí ñ ïðåäñòàâëåíèåì å¼ êàê D3-áðàíû (3 ïðîñòðàíñòâåííûõ è îäíà âðåìåííàÿ ïåðåìåííàÿ), âëîæåííîé â ìíîãîìåðíîå ïðîñòðàíñòâî-âðåìÿ. D-áðàíûåñòåñòâåííûì îáðàçîì âîçíèêàþò â òåîðèè îòêðûòûõ ñòðóí. Ìû áóäåì ðàññìàòðèâàòü íåýêñòðåìàëüíóþ áðàíó. Ýòà D-áðàíà íåñòàáèëüíà è ýâîëþöèîíèðóåò âñòàáèëüíîå ñîñòîÿíèå.
Ýòîò ïðîöåññ îïèñûâàåòñÿ äèíàìèêîé îòêðûòîé åðìèîííîé ñòðóíû, êîíöû êîòîðîé çàêðåïëåíû íà áðàíå è êîòîðàÿ ñîäåðæèò êàêGSO+, òàê è GSO− ñåêòîðà1 (ñì. [258260℄ è ïðèâåä¼ííûå â ýòèõ îáçîðàõ ñîîòâåòñòâóþùèå ññûëêè). Åñëè îãðàíè÷èòüñÿ òîëüêî íèçøèì âîçáóæäåíèåì òàõèîíîì, òî äèíàìèêà D-áðàíû áóäåò îïèñûâàòüñÿ äåéñòâèåì òàõèîíà îòêðûòîé ñòðóíû. Èìååòñÿ äâà îáùåïðèíÿòûõ ñïîñîáà îïèñàíèÿ ïîâåäåíèÿ òàõèîíà:â ðàìêàõ ïðèáëèæåíèÿ Äèðàêà-Áîðíà-Èíåëüäà (DBI) èëè, èñïîëüçóÿ ìåòîäîáðåçàíèÿ ïî óðîâíÿì, â êîâàðèàíòíîé ïîëåâîé òåîðèè ñòðóí [274, 317, 318℄.Ìåòîä îáðåçàíèÿ ïî óðîâíÿì îïðàâäàë ñåáÿ ïðè ïðîâåðêå ãèïîòåçû Ñåíà [262℄è, ïîýòîìó åãî åñòåñòâåííî èñïîëüçîâàòü äëÿ àíàëèçà äèíàìèêè D-áðàí (ñì.[264, 319, 327℄). Äåéñòâèå òàõèîíà, ïîëó÷àþùååñÿ èç ïîëåâîé òåîðèè åðìèîííîé ñòðóíû â ïðèáëèæåíèè ìåäëåííî èçìåíÿþùåãîñÿ âñïîìîãàòåëüíîãî ïîëÿ [264℄, èìååò âèäZ11181Sat = 2 d4x − ∂µ ϕ∂ µϕ + ϕ2 −ϕ̃4 ,go242561GSO Gliozzi, Sherk, Olive.126ãäå ϕ åñòü áåçðàçìåðíîå ïîëå òàõèîíà, êîîðäèíàòû è êîíñòàíòà go òàêæåáåçðàçìåðíû.
Òèëüäà îçíà÷àåò äåéñòâèå íà ïîëå ϕ íåëîêàëüíîãî îïåðàòîðà 4µ√exp − log 3 3 ∂µ ∂ , à èíäåêñ at çäåñü è äàëåå óêàçûâàåò íà òî, ÷òî ìûèìååì äåëî ñ ïëîñêîé îíîâîé ìåòðèêîé. Îòìåòèì, ÷òî â ñëó÷àå áîçîííîé ñòðóíû áóäåò êóáè÷åñêîå âçàèìîäåéñòâèå.  ñëó÷àå ïðîñòðàíñòâåííî îäíîðîäíûõêîíèãóðàöèé îñòà¼òñÿ òîëüêî çàâèñèìîñòü îò âðåìåíè τ , è äåéñòâèå ïðèíèìàåò âèä:Z1(τ )Sat = 2 dτgoÂâîäÿ îáîçíà÷åíèå φ =1+29√4 2dϕdτ24 !24d1 281√+ ϕ −elog( 3 3 ) dτ 2 ϕ.4256 2exp log 3√4 3 dτd 2 ϕ è ïåðåõîäÿ ê ïåðåìåííîé t =2τ , çàïèøåì óðàâíåíèå äâèæåíèÿ, âûòåêàþùèå èç ïîñëåäíåãî äåéñòâèÿ, â âèäåd2d2− 2 + 2 eã dt2 φ = 2φ3,dt 1ãäå ã = − 4 log 3√4 3 > 0.
Ïî-ñóùåñòâó ýòî óðàâíåíèå ÿâëÿåòñÿ èíòåãðàëüíûì,ïîñêîëüêó íà ïîëÿõ îïðåäåë¼ííîãî êëàññà ýêñïîíåíòà, ñîäåðæàùàÿ áåñêîíå÷íîå ÷èñëî ïðîèçâîäíûõ, ìîæåò áûòü çàìåíåíà èíòåãðàëüíûì îïåðàòîðîì [319℄:Z t−t′ 2()d21− 2 +2 √e 4ã φ(t′ )dt′ = 2φ(t)3.(4.9)dt4πãÎòìåòèì, ÷òî åñëè â óðàâíåíèè (4.9) ïðåíåáðå÷ü ïåðâûì ñëàãàåìûì, òî ïîëó÷èòñÿ óðàâíåíèå äëÿ p-àäè÷åñêîé ñòðóíû (â íàøåì ñëó÷àå p = 3) [320323℄. Âýòîì ñëó÷àå äîêàçàíî ñóùåñòâîâàíèå ðîëëèíãîâîãî ðåøåíèÿ, ò.å. ðåøåíèÿ, ïåðåõîäÿùåãî èç îäíîãî âàêóóìà â äðóãîé [324℄. ×èñëåííî ýòî ðåøåíèå áûëî ðàíååïîñòðîåíî â [320℄. Óðàâíåíèå (4.9) òàêæå èññëåäîâàëîñü â ðàáîòàõ [264, 327℄.Ýåêòèâíî ïîâåäåíèå ðîëëèíãîâîãî ðåøåíèÿ ïðè áîëüøèõ âðåìåíàõ ìîæåò áûòü îïèñàíî ëàãðàíæèàíîì ñ äóõîâûì çíàêîì êèíåòè÷åñêîãî ÷ëåíà èòàêèì æå, êàê è ðàíüøå, ïîòåíöèàëîì.
Ñîîòâåòñòâóþùåå äåéñòâèå èìååò âèäZ 1 2 1(t)2 2Se,at = dt − φ̇ − 1 − φ.(4.10)22127Êàê èçâåñòíî, óðàâíåíèå äâèæåíèÿ, ñëåäóþùåå èç äåéñòâèÿ (4.10):φ̈ + 2φ 1 − φ2 = 0(4.11)èìååò èíòåðïîëèðóþùåå ðåøåíèå êèíê:(4.12)φ(t) = tanh(t).Íåîáõîäèìî ïîñòðîèòü êîñìîëîãè÷åñêóþ ìîäåëü ñ ïîäîáíûì òî÷íûì ðåøåíèåì.4.2.2. Êîñìîëîãè÷åñêàÿ ìîäåëü ñ òî÷íûì ðåøåíèåì òèïà êèíêààññìîòðèì ãðàâèòàöèîííóþ ìîäåëü ñ àíòîìíûì ñêàëÿðíûì ïîëåì. Òàêêàê ïðîèñõîæäåíèå ðàññìàòðèâàåìîãî àíòîìíîãî ïîëÿ ñâÿçàíî ñ ïîëåâîé òåîðèåé ñòðóí, òî â äåéñòâèå ñëåäóåò âêëþ÷èòü õàðàêòåðíóþ ìàññó ñòðóíû Ms èáåçðàçìåðíóþ êîíñòàíòó âçàèìîäåéñòâèÿ îòêðûòûõ ñòðóí go . Äåéñòâèå èìååòâèä [217℄:Z√S = d4 x −gMP211 µνR + 2 + g ∂µ φ∂ν φ − V (φ),2Ms2go2(4.13)ãäå MP ìàññà Ïëàíêà.