Диссертация (1097926), страница 47
Текст из файла (страница 47)
363379.409. Yoshida H. A new neessary ondition for the integrability of Hamiltoniansystems with a two-dimensional homogeneous potential // Physia D. 1999. Vol. 128. P. 5369.410. Êîçëîâ Â.Â. Ñèììåòðèÿ, òîïîëîãèÿ è ðåçîíàíñû â ãàìèëüòîíîâîé ìåõàíèêå. Èæåâñê, Èçä-âî.
ÓÓ, 1995.411. Sahadevan. R. Painleve expansion and exat solution for nonlinear evolutionequations // Òåîð. Ìàò. Ôèç. 1994. Vol. 99. P. 528536.412. Conte R., Fordy A.P., Pikering A. A perturbative Painleve approah tononlinear dierential equations // Physia D. 1993. Vol.
69. P. 33.413. Springael J., Conte R., Musette M. On the exat solutions of the Bianhi IXosmologial model in the proper time // Regular Chaoti Dyn. 1998. 318Vol. 3. P. 3. [arXiv:solv-int/9804008℄.414. Baldwin D., Hereman W., Symboli Software for the Painleve Test ofNonlinear Ordinary and Partial Dierential Equations // J. Nonlin. Math.Phys.
2006 Vol. 13, No. 1. P. 90110. [arXiv:nlin.SI/0505004℄.415. Hearn A.C. REDUCE. User's Manual, Vers. 3.8,http://www.redue-algebra.om/doumentation.htmREDUCE. User's and Contributed Pakages Manual, Vers. 3.7, CA andCodemist Ltd, Santa Monia, California, 1999,http://www.zib.de/Symbolik/redue/more/moredos/redue.pdf416. Åäíåðàë Â.Ô., Êðþêîâ À.Ï., îäèîíîâ À.ß., ßçûê àíàëèòè÷åñêèõ âû÷èñëåíèé REDUCE.
Ì.: Èçä-âî ÌÓ, 1989.417. Droue J.-M., Simplex AMP referene manual, version 1.0 (1996), SPhT, CEASaley, F-91191 Gif-sur-Yvette Cedex, 1996.418. Hek A., Introdution to Maple, 3rd Edition, SpringerVerlag, New York,2003.419. Contopoulos G. On the Existene of a Third Integral of Motion // Astron. J.
1963. Vol. 68. P. 1.420. Henon M., Heiles C. The appliability of the third integral of motion: somenumerial experiments // Astron. J. 1964 Vol. 69. P. 7379.421. Chang Y.F., Tabor M., Weiss J., Corliss G. On the Analyti Struture of theHenonHeiles System // Phys. Lett. A. 1981. Vol. 85. P. 211213.422. Chang Y.F., Tabor M., Weiss J. Analyti Struture of the He'non-HeilesHamiltonian in integrable and nonintegrable regimes // J. Math.
Phys. 1982. Vol. 23. P. 531538.423. Weiss J. Baklund Transformation and the HenonHeiles System // Phys.Lett. A. 1984. Vol. 105. P. 387389.424. Fordy A.P., The HenonHeiles system revisited // Physia D 1991. Vol. 52. P. 204210425. Conte R., Musette M., Verhoeven C., Expliit integration of the HenonHeiles319Hamiltonians // J. Non. Math. Phys. 2005.
Vol. 12. (Suppl. 1) P. 212227. [arXiv:nlin/0412057℄426. Verhoeven C., Musette M., Conte R., Integration of a generalizedHe'nonHeiles Hamiltonian // J. Math. Phys. 2002. Vol. 43þ P. 1906.[arXiv:nlin/0112030℄427. Rod D.L. Pathology of invariant sets in the monkey saddle // J. of DierentialEquations. 1973. Vol. 14. P. 129.428.
Podolsky Ji., Vesely K. Chaos in pp-wave spaetimes // Physial Review D. 1998 Vol. 58. P. 081501. [arXiv:gr-q/9805078℄429. Kokubun F. Gravitational waves from the HenonHeiles system // PhysialReview D. 1998 Vol. 57. P. 26102612.430.
Guo Y., Grotta Ragazza C. On steady states in a ollisionless plasma //Communiations on Pure and Applied Mathematis 1996 Vol. 49 P. 11451174.431. Tondo G., A onnetion between the HenonHeiles system and the Garniersystem // Theoretial and Mathematial Physis 1994. Vol. 99 P.
796802.432. Kokubun F. Gravitational waves from the Newtonian plus Henon-Heilessystem // Phys. Lett. A. 1998. Vol. 245. P. 358.433. Hone A.N.W., Non-autonomous HenonHeiles systems // Physia D. 1998. Vol. 118. P. 116.434. Melkonian S.. Psi-series solutions of the ubi HenonHeiles system and theironvergene // J. of Nonlin. Math. Phys.
1999. Vol. 6, No. 2. P.139160. [math.DS/9904186℄435. vanHoeijM.:pakagealgurves,MapleV(1997),http://www.math.fsu.edu/~hoeij/maple.html436. von A. Hurwitz, Allgemeine Funktionentheorie und Elliptishe Funktionen,von R. Courant, Geometrishe Funktionentheorie, SpringerVerlag, Berlin,New York, 1964.320437. Ginzburg V.L., Landau L.D.
To the Theory of Superondutivity // Sov.Phys. JETP. 1950. Vol. 20. P. 10641082.438. Aranson I., Kramer L., The World of the Complex Ginzburg-Landau Equation// Rev. Mod. Phys. 2002. Vol. 74 P. 99143 [ond-mat/0106115℄.439. Cross M.C., Hohenberg P.C., Pattern formation outside of equilibrium // Rev.Mod. Phys. 1993. Vol. 65 P. 8511112.440. Agrawal G.P., Nonlinear ber optis, Aademi press, Boston, 1989.441. van Heke M., Storm C., van Saarlos W., Soures, sinks and wavenumberseletion in oupled CGL equations and experimental impliations for ounterpropagating wave systems // Physia D 1999.
Vol. 133. P. 147 [Pattsol/9902005℄.442. Manneville P., Dissipative strutures and weak turbulene, Aademi Press,Boston, 1990.443. Blashke D., Sedrakian D., GinzburgLandau equations for superondutingquark matter in neutron stars // nul-th/0006038.444. Eto M., Hirono Y., Nitta M., Yasui S., Vorties and Other Topologial Solitonsin Dense Quark Matter // Prog. Theor.
Exp. Phys. 2014. Vol. 2014, No.1. P. 012D01 [arXiv:1308.1535℄.445. Òàõòàäæÿí Ë.À., Ôàääååâ Ë.Ä. - àìèëüòîíîâ ïîäõîä â òåîðèè ñîëèòîíîâ,Ì., Íàóêà, 1986446. Newell A.C., Solitons in Mathematis and Physis, Soiety for Industrial andApplied Mathematis, Filadelphia, 1985.447. Bekki N., Nozaki K., Formations of spatial patterns and holes in thegeneralized GinzburgLandau equation // Physis Letters A 1985 Vol.110, No. 3.
P. 133135.448. van Saarloos W., Hohenberg P.C., Fronts, pulses, soures and sinks ingeneralized omplex GinzburgLandau equations // Physia D 1992. Vol. 56. P. 303367; Erratum 1993. Vol. 69. P. 209449. van Heke M., Coherent and Inoherent strutures in systems desribed by the3211D CGLE: Experiments and Identiation // Physia D 2003. Vol. 174.
P. 134151. [ond-mat/0110068℄450. Cariello F., Tabor M., Painleve expansions for nonintegrable evolutionequations // Physia D 1989. Vol. 39. P. 7794.451. Marq Ph., Chate H., Conte R. Exat Solutions of the One-DimensionalQuinti Complex Ginzburg-Landau Equation // Physia D 1994. Vol. 73. P. 305317. [patt-sol/9310004℄452. van Saarloos W., Hohenberg P.C.
Pulses and fronts in the omplexGinzburgLandau equation near a subritial bifuration // Phys. Rev. Lett. 1990 Vol. 64. P. 749752.453. Kengne E., Liu W.M. Exat solutions of the derivative nonlinear Shrodingerequation for a nonlinear transmission line // Physial Review E 2006 Vol. 73. P. 026603454. Eremenko A.E. Meromorphi traveling wave solutions of the KuramotoSivashinsky equation // J. Math. Phys.
Anal. Geom. 2006 Vol. 2, No. 3. P. 278286. [nlin.SI/0504053℄.455. Äýâåíïîðò Äæ., Ñèðý È., Òóðíüå Ý., Êîìïüþòåðíàÿ àëãåáðà. Ñèñòåìû èàëãîðèòìû àëãåáðàè÷åñêèõ âû÷èñëåíèé. Ìîñêâà. Ìèð. 1991. (ïåðåâîä ñ:Davenport J.H., Siret Y., Tournier E., Calul Formel, Systemes et Algorithmesde Manipulations Algebriques, Masson, Paris, New York, 1987.).