Диссертация (1097926), страница 42
Текст из файла (страница 42)
043511, hep-th/0703007128. Calagni G., Montobbio M., Nardelli G. A route to nonloal osmology //Physial Review D 2007. Vol. 76. P. 126001. [arXiv:0705.3043℄129. Calagni G., Nardelli G. Tahyon solutions in boundary and ubi stringeld theory // Physial Review D 2008. Vol. 78. P. 126010.[arXiv:0708.0366℄130. Calagni G., Montobbio M., Nardelli G. Loalization of nonloal theories //Phys. Lett. B 2008.
Vol. 662. P. 285289. [arXiv:0712.2237℄131. Joukovskaya L.V. Dynamis in nonloal osmologial models derived fromstring eld theory // Physial Review D 2007. Vol. 76. P. 105007.[arXiv:0707.1545℄132. Barnaby N., Biswas T., Cline J.M., p-adi Ination // J. High Energy Phys.291 2007. Vol. 0704. P. 056. [arXiv:hep-th/0612230℄133. Barnaby N., Cline J.M., Large Nongaussianity from Nonloal Ination // J.Cosmol.
Astropart. Phys. 2007. Vol. 0707. P. 017. [arXiv:0704.3426℄134. Barnaby N. Nonloal Ination // Can. J. Phys. 2009. Vol. 87. P. 189194. [arXiv:0811.0814℄135. Yi-Fu Cai, Saridakis E.N., Setare M.R., Jun-Qing Xia, Quintom Cosmology:theoretial impliations and observations // Phys. Rep. 2010. Vol.
493. P. 160 [arXiv:0909.2776℄136. Hongsheng Zhang, Crossing the phantom divide // arXiv:0909.3013137. Biswas T., Mazumdar A., Siegel W., Bouning Universes in String-inspiredGravity // J. Cosmol. Astropart. Phys. 2006. Vol. 0603. P. 009.[arXiv:hep-th/0508194℄138. Biswas T., Koivisto T., Mazumdar A., Towards a resolution of theosmologial singularity in non-loal higher derivative theories of gravity //J. Cosmol. Astropart. Phys. 2010.
Vol. 1011. P. 008. [arXiv:1005.0590℄139. Biswas T., Koshelev A.S., Mazumdar A., Vernov S.Yu., Stable boune andination in non-loal higher derivative osmology // Journal of Cosmologyand Astropartile Physis. 2012. Vol. 1208. P. 024. [arXiv:1206.6374℄140. Craps B., De Jonkheere T., Koshelev A.S. Cosmologial perturbations innon-loal higher-derivative gravity // J. Cosmol. Astropart. Phys. 2014.
Vol. 1411. P. 022, [arXiv:1407.4982℄141. Wetterih C. Eetive nonloal Eulidean gravity // Gen. Rel. Grav. 1998. Vol. 30. P. 159. [gr-q/9704052℄.142. Deser S., Woodard R.P., Nonloal Cosmology // Phys. Rev. Lett. 2007. Vol. 99. P. 111301. [arXiv:0706.2151℄143. Nojiri S., Odintsov S.D., Modied non-loal-F(R) gravity as the key for theination and dark energy // Phys. Lett. B 2008. Vol. 659. P.
821826.[arXiv:0708.0924℄144. Jhingan S., Nojiri S., Odintsov S.D., Sami M., Thongkool I., Zerbini S.,292Phantom and non-phantom dark energy: The osmologial relevane of nonloally orreted gravity // Phys. Lett. B 2008. Vol. 663. P. 424428.[arXiv:0803.2613℄145. Koivisto T.S. Dynamis of Nonloal Cosmology // Phys. Rev. D 2008. Vol. 77. P.
123513. [arXiv:0803.3399℄146. Koivisto T.S. Newtonian limit of nonloal osmology // Phys. Rev. D 2008. Vol. 78. P. 123505. [arXiv:0807.3778℄147. Deayet C., Woodard R.P., Reonstruting the Distortion Funtion forNonloal Cosmology // J. Cosmol. Astropart.
Phys. 2009. Vol. 0908. P. 023. [arXiv:0904.0961℄148. Deser S., Woodard R.P., Observational Viability and Stability of NonloalCosmology // J. Cosmol. Astropart. Phys. 2013. Vol. 1311. P. 036.[arXiv:1307.6639℄149. Woodard R.P. Nonloal Models of Cosmi Aeleration // Found. Phys. 2014. Vol. 44. P. 213233 [arXiv:1401.0254℄150. Maggiore M., Manarella M.
Nonloal gravity and dark energy // Phys. Rev.D 2014. Vol. 90. P. 023005 [arXiv:1402.0448℄.151. Wetterih C. Modied gravity and oupled quintessene // Modiations ofEinstein's Theory of Gravity at Large Distanes, Leture Notes in PhysisVolume 2015.
Vol. 892. P. 5795. [arXiv:1402.5031℄152. Tsamis N.C., Woodard R.P., A Caveat on Building Nonloal Models ofCosmology // J. Cosmol. Astropart. Phys. 2014. Vol. 1409. P. 008.[arXiv:1405.4470℄.153. Barreira A., Li B., Hellwing W.A., Baugh C.M., Pasoli S., Nonlinear strutureformation in Nonloal Gravity // J. Cosmol. Astropart.
Phys. 2014. Vol. 1409. P. 031. [arXiv:1408.1084℄.154. Dirian Y., Mitsou E., Stability analysis and future singularity of them2 R−2R model of non-loal gravity // J. Cosmol. Astropart. Phys. 2014. Vol. 1410. P. 065. [arXiv:1408.5058℄.293155. Barvinsky A.O. Aspets of Nonloality in Quantum Field Theory, QuantumGravity and Cosmology // Mod.Phys.Lett. A 2015. Vol. 30.
P. 1540003.[arXiv:1408.6112℄.156. Dirian Y., Foa S., Kunz M., Maggiore M., Pettorino V., Non-loal gravityand omparison with observational datasets // J. Cosmol. Astropart. Phys. 2015. Vol. 1504. P. 044 [arXiv:1411.7692℄.157. Koshelev N.A., Comments on salar-tensor representation of nonloallyorreted gravity // Grav. Cosmol.
2009. Vol. 15. P. 220223.[arXiv:0809.4927℄158. Bronnikov K.A., Elizalde E. Spherial systems in models of nonloallyorreted gravity // Phys. Rev. D 2010. Vol. 81. P. 044032.[arXiv:0910.3929℄159. Kluson J., Non-Loal Gravity from Hamiltonian Point of View // J. HighEnergy Phys. 2011. Vol. 1109. P. 001. [arXiv:1105.6056℄160. Nojiri S., Odintsov S.D., Sasaki M., Zhang Y.l., Sreening of osmologialonstant in non-loal gravity // Phys. Lett. B 2011.
Vol. 696. P. 278282. [arXiv:1010.5375℄161. Bamba K., Nojiri S., Odintsov S.D., Sasaki M. Sreening of osmologialonstant for De Sitter Universe in non-loal gravity, phantom-divide rossingand nite-time future singularities // Gen. Rel. Grav. 2012. Vol. 44. P. 13211356 (arXiv:1104.2692)162. Zhang Y.l., Sasaki M. Sreening of osmologial onstant in non-loalosmology // Int. J. Mod.
Phys. D 2012. Vol. 21. P. 1250006(arXiv:1108.2112)163. Copeland E.J., Sami M., Tsujikawa S.J. Dynamis of dark energy //International Journal of Modern Physis D. 2006. Vol. 15, No. 11. P. 17531936. [arXiv:hep-th/0603057℄164. Carloni S., Capozziello S., Leah J.A., Dunsby P.K.S., Cosmologial dynamisof salar-tensor gravity // Class. Quant. Grav. 2008.
Vol. 25. P. 035008.294[gr-q/0701009℄.165. Leon G., Fadragas C.R., Cosmologial dynamial systems // arXiv:1412.5701[gr-q℄.166. Sami M., Shahalam M., Skugoreva M., Toporensky A., Cosmologial dynamisof non-minimally oupled salar eld system and its late time osmi relevane// Phys. Rev. D 2012.
Vol. 86. P. 103532. [arXiv:1207.6691℄.167. Skugoreva M.A., Toporensky A.V., Vernov S.Yu. Global stability analysisfor osmologial models with nonminimally oupled salar elds // PhysialReview D. 2014. Vol. 90, no. 6. P. 064044. [arXiv:1404.6226℄.168. Gunzig E., Faraoni V., Figueiredo A., Roha T. M., Brenig L., The dynamialsystem approah to salar eld osmology // Class. Quant.
Grav. 2000. Vol. 17. P. 1783.169. Faraoni V., Protheroe C.S., Salar eld osmology in phase spae // Gen. Rel.Grav. 2013. Vol. 45. P. 103. [arXiv:1209.3726℄.170. Hryyna O., Szydlowski M. Dynamial omplexity of the Brans-Dikeosmology // Journal of Cosmology and Astropartile Physis. 2013. Vol.2013, No. 12. P. 016.171. Szydlowski M., Hryyna O., Stahowski A. Salar eld osmology geometpyof dynamis // International Journal of Geometri Methods in ModernPhysis. 2014. Vol. 11. P. 1460012. [arXiv:1308.4069℄.172.
Fre P., Sagnotti A., Sorin A.S. Integrable Salar Cosmologies I. Foundationsand links with String Theory // Nul. Phys. B 2013 Vol. 877 P. 1028[arXiv:1307.1910℄173. Fre P., Sorin A.S., Trigiante M. Integrable Salar Cosmologies II. Can theyt into Gauged Extended Supergavity or be enoded in N=1 superpotentials?// Nul.
Phys. B 2014 Vol. 881 P. 91180 [arXiv:1310.5340℄174. Kowalevski S., Sur le probl`eme de la rotation d'un orps solide autour d'unpoint xe // Ata Mathematia. 1889. Vol. 12. P. 177232; (Ïåðåâîä:Êîâàëåâñêàÿ Ñ.Â., Íàó÷íûå ðàáîòû. Ì.: Èçä-âî ÀÍ ÑÑÑ, 1948.)295175. Painleve P. Leons sur la theorie analytique des equations dierentielles,profeesees a Stokholm (septembre, otobre, novembre 1895) sur l'invitationde S. M. le roi de Suede et de Norwege, Hermann, Paris, 1897.176. Painleve P.
Memoire sur les equations dierentie lles dont l'integrale generaleest uniforme // Bull Math. So. Frane 1990. Vol. 28. P. 201261.177. îëóáåâ Â.Â., Ëåêöèè ïî àíàëèòè÷åñêîé òåîðèè äèåðåíöèàëüíûõ óðàâíåíèé. ÌîñêâàËåíèíãðàä, îñòåõèçäàò, 1950.178. Hille E., Ordinary Dierential Equations in the Complex Domain. New York,Wiley, 1976.179. Ablowitz M.J., Ramani A., Segur H. Nonlinear evolution equations andordinary dierential equations of Painleve type // Lett.
Nuovo Cimento 1978. Vol 23. P. 333338.180. Ablowitz M.J., Ramani A., Segur H. A onnetion between nonlinear evolutionequations and ordinary dierential equations of P-type. I & II // J. Math.Phys. 1980. Vol 21 P. 715721, & P. 10061015.181. Ramani A., Grammatios B., Bountis T. The Painleve property andsingularity analysis of integrable and nonintegrable systems // Phys. Rep. 1989. Vol. 180 P. 159245.182.
Conte R. (ed.) The Painleve property, one entury later, CRM series inmathematial physis, Springer, Berlin, 1998.183. Conte R., Musette M., Introdution to the Painleve property, test and analysis// arXiv:1406.6510184. Êóäðÿøîâ Í.À., Àíàëèòè÷åñêàÿ òåîðèÿ íåëèíåéíûõ äèåðåíöèàëüíûõóðàâíåíèé, èçäàíèå âòîðîå, ÌîñêâàÈæåâñê, ÕÄ, 2004.185. îëóáåâ Â.Â., Ëåêöèè ïî èíòåãðèðîâàíèþ óðàâíåíèé äâèæåíèÿ òÿæ¼ëîãîòâ¼ðäîãî òåëà îêîëî íåïîäâèæíîé òî÷êè. Ì.: îñòåõèçäàò, 1953, ïåðåïå÷àòàíî: ÌîñêâàÈæåâñê, ÕÄ, 2002.186.