Диссертация (1097926), страница 46
Текст из файла (страница 46)
2328 [arXiv:astro-ph/9405029℄348. Kaiser D.I., Primordial spetral indies from generalized Einstein theories //Physial Review D 1995. Vol. 52. P. 4295. [arXiv:astro-ph/9408044℄349. Cervantes-Cota J.L., Dehnen H. Indued gravity ination in the standardmodel of partile physis // Nul. Phys. B 1995. Vol.
442. P. 391.[arXiv:astro-ph/9505069℄350. Kamenshhik A.Yu., Khalatnikov I.M., Toporensky A.V. Complex InatonField in Quantum Cosmology // International Journal of Modern Physis D.312 1997. Vol. 6, No. 6. P. 649671. [arXiv:gr-q/9801039℄351. Uzan J. Cosmologial saling solutions of non-minimally oupled salar elds.// Physial Review D 1999. Vol. 59. P.
123510.352. Boisseau B., Esposito-Farese G., Polarski D., Starobinsky A.A. Reonstrutionof a salar-tensor theory of gravity in an aelerating universe. // Phys. Rev.Lett. 2000. Vol. 85. P. 2236.353. Gannouji R., Polarski D., Ranquet A., Starobinsky A.A. Salar-tensor modelsof normal and phantom dark energy. // J. Cosmol. Astropart. Phys.
2006. Vol. 0609. P. 016.354. Elizalde E., Nojiri E., Odintsov S.D., Saez-Gomez D., Faraoni V.,Reonstruting the universe history, from ination to aeleration, withphantom and anonial salar elds // Physial Review D. 2008. Vol. 77,No. 10. P. 106005. [arXiv:0803.1311℄355. Cerioni A., Finelli F., Trononi A., Venturi G. Ination and Reheating inIndued Gravity // Phys. Lett. B 2009. Vol. 681. P. 383386.[arXiv:0906.1902℄356.
Cerioni A., Finelli F., Trononi A., Venturi G. Ination and Reheating inSpontaneously Generated Gravity // Physial Review D. 2010. Vol. 81,No. 12. P. 123505. [arXiv:1005.0935℄357. Trononi A., Venturi G., Quantum Bak-Reation in Sale Invariant InduedGravity Ination // Physial Review D. 2011. Vol.
84, No. 6. P. 063517.[arXiv:1011.39580℄358. Cervantes-Cota J.L., de Putter R., Linder E.V., Indued Gravity and theAttrator Dynamis of Dark Energy/Dark Matter // J. Cosmol. Astropart.Phys. 2010. Vol. 1012. P. 019. [arXiv:1010.2237℄359. Kamenshhik A.Yu., Trononi A., Venturi G. Dynamial Dark Energy andSpontaneously Generated Gravity // Phys. Lett. B 2012. Vol. 713. P. 358. [arXiv:1204.2625℄360. Kamenshhik A.Yu., Trononi A., Venturi G. Reonstrution of salar313potentials in indued gravity and osmology // Phys.
Lett. B 2011. Vol. 702. P. 191196. [arXiv:1104.2125℄361. Aref'eva I.Ya., Bulatov N.V., Gorbahev R.V., Vernov S.Yu., Non-minimallyCoupled Cosmologial Models with the Higgs-like Potentials and NegativeCosmologial Constant // Classial and Quantum Gravity. 2014. Vol.31, no. 6. P. 065007. [arXiv:1206.2801℄362. Elizalde E., Odintsov S.D., Pozdeeva E.O., Vernov S.Yu.. Renormalizationgroup improved inationary salar eletrodynamis and SU (5) senariosonfronted with Plank 2013 and BICEP2 results // Physial Review D.
2014. Vol. 90, No. 8. P. 084001. [arXiv:1408.1285℄.363. Luhin F., Matarrese S. Power Law Ination // Physial Review D. 1985. Vol. 32. P. 1316.364. Halliwell J.J. Salar Fields in Cosmology with an Exponential Potential //Phys. Lett. B 1987. Vol. 185. P. 341.365. Barrow J.D. Cosmi No Hair Theorems and Ination // Phys. Lett. B 1987. Vol. 187. P. 12366. Burd A.B., Barrow J.D. Inationary Models with Exponential Potentials //Nul. Phys. B 1988. Vol. 308.
P. 929367. Muller V., Shmidt H.J., Starobinsky A.A., Power law ination as an attratorsolution for inhomogeneous osmologial models // Class. Quantum Grav. 1990 Vol. 7. P. 1163368. Ellis G.F.R, Madsen M.S. Exat salar eld osmologies // Class. QuantumGrav. 1991 Vol. 8. P. 667.369. Gorini V., Kamenshhik A.Yu., Moshella U., Pasquier V. Tahyons, salarelds and osmology // Physial Review D. 2004. Vol. 69, No. 12. P.123512 [arXiv:hep-th/0311111℄370.
Copeland E.J., Liddle A.R., Wands D. Exponential potentials andosmologial saling solutions. // Physial Review D. 1998. Vol. 57. P. 46864690.314371. de Ritis R., Marmo G., Platania G., Rubano C., Sudellaro P., Stornaiolo C.New approah to nd exat solutions for osmologial models with a salareld // Physial Review D. 1990. Vol. 42 P. 1091.372. Piedipalumbo E., Sudellaro P., Esposito G., Rubano C. On quintessentialosmologial models and exponential potentials // Gen.
Relat. Grav. 2012. Vol. 44. P. 2611. [arXiv:1112.0502℄373. Mikhailov A.S., Mikhailov Y.S., Smolyakov M.N., Volobuev I.P. Gravity ina stabilized brane world model in ve-dimensional Brans-Dike theory //Theor.Math.Phys. 2009. Vol. 161. P. 14241437.374. Bamba K., Nojiri Sh., Odintsov S.D. and Saez-Gomez D. Possible antigravityregions in F (R) theory? // Phys. Lett. B 2014.
Vol. 730. P. 136140.[arXiv:1401.1328℄375. Andrianov A.A., Cannata F., Kamenshhik A.Yu., Smooth dynamial(de)-phantomization of a salar eld in simple osmologial models // PhysialReview D 2005. Vol. 72. P. 043531 [arXiv:gr-q/0505087℄.376. Starobinsky A.A., Yokoyama J., Equilibrium State of a Massless SelfInterating Salar Field in the De Sitter Bakground // Physial Review D 1994. Vol. 50. P. 63576368. [arXiv:astro-ph/9407016℄.377. Weiss J. Baklund Transformation and Linearizations of the HenonHeilesSystem // Phys.
Lett. A. 1984. Vol. 102. P. 329331.378. Kudryashov N.A. Exat soliton solutions of the generalized evolution equationof wave dynamis // Journal of Applied Mathematis and Mehanis. 1988. Vol. 52. P. 360365.379. Santos G.S., Appliation of Finite Expansion in Ellipti Funtions to SolveDierential Eduations // J. of the Physial Soiety of Japan 1989. Vol.58. P.
43014310.380. Conte R., Musette M. Link between solitary waves and projetive Riatiequations // J. Phys. A. 1992. Vol. 25. P. 5609.381. Antonov V.A., Timoshkova E.I. Simple trajetories in the rotation315symmetrial gravitational eld // Russ. Astron. J. 1993. Vol. 70 P.265276.382. Conte R., Musette M. Linearity inside nonlinearity: exat solutions to theomplex Ginzburg-Landau equation // Physia D 1993. Vol. 69 P. 117.383. Akhmediev N.N., Afanasjev V., J.M. Soto-Crespo, Singularities and speialsoliton solutions of the ubi-quinti omplex GinzburgLandau equation //Rev.
Phys. E. 1996. Vol. 53. P. 11901201.384. Timoshkova E.I., A New lass of trajetories of motion in the HenonHeilespotential eld // Astron. Rep. 1999. Vol. 43. P. 406411.385. Grimshaw R., Pavlov M. Exat periodi steady solutions for nonlinear waveequations: A new approah // Phys. Lett. A 1999. Vol. 251 P. 2530.386. Fan E., Multiple travelling wave solutions of nonlinear evolution equationsusing a unied algebrai method // J.
of Physia A. 2002. Vol. 35. P. 68536872387. Fan E., An algebrai method for nding a series of exat solutions to integrableand nonintegrable nonlinear evolutions equations // J. of Physia A. 2003. Vol. 36 P. 70097026.388. Kudryashov N.A., Nonlinear dierential equations with exat solutionsexpressed via the Weierstrass funtion // arXiv:nlin.CD/0312035.389. Conte R., Musette M., Verhoeven C. Integration of a generalized HenonHeilesHamiltonian // J. Math. Phys. 2002.
Vol. 43. P. 19061915.[arXiv:nlin.SI/0112030℄390. Eilbek J.C., Enol'skii V.Z., Ellipti solutions and blow-up in an integrableHenonHeiles system // Proeedings of the Royal Soiety of Edinburgh. 1994. Vol. 124A. P. 11511164.391. Kudryashov N.A. Simplest equation method to look for exat solutions ofnonlinear dierential equations // Chaos, Solitons and Fratals. 2005. Vol. 24. P. 12171231. [arXiv:nlin.SI/0406007℄.392. Chen Y., Yan Z.
The Weierstrass ellipti funtion expansion method and its316appliations in nonlinear wave equations // Chaos Solitons and Fratals. 2006. Vol. 29, No. 4. P. 948964.393. Kudryashov N.A., Loguinova N.B. Extended simplest equation method fornonlinear dierential equations // Applied Mathematis and Computation. 2008.
Vol. 205. P. 396402.394. Vladimirov V.A., Kutana E.V. Exat travelling wave solutionsof somenonlinear evolutionary equations // Rep. Math. Physis 2004 Vol. 54. P. 261271.395. Conte R., Musette M. Solitary waves of nonlinear nonintegrable equations //arXiv:nlin.PS/0407026.396. Demina M.V., Kudryashov N.A., Sinel'shhikov D.I. The polygonal methodfor onstruting exat solutions to ertain nonlinear dierential equationsdesribing water waves // Computational Mathematis and MathematialPhysis 2008.
Vol. 48 P. 21822193.397. Qin M., Fan G. An eetive method for nding speial solutions of nonlineardierential equations with variable oeients // Phys. Lett. A 2008. Vol. 372. P. 32403242.398. Kudryashov N.A. Seven ommon errors in nding exat solutions of nonlineardierential equations // Commun. Nonlinear Si. Numer. Simul. 2009. Vol. 14 P. 35073529.399. Popovyh R.O., Vaneeva O.O. More ommon errors in nding exat solutionsof nonlinear dierential equations: Part I // Commun. Nonlinear Si. Numer.Simul. 2010 Vol. 15 P. 38873899.
[arXiv:0911.1848℄400. Kudryashov N.A., Prilipko S.G. Exat solutions of the generalized K(m, m)equations // Communiations in Nonlinear Siene and Numerial Simulation 2011 Vol. 16 P. 11071113. [arXiv:1201.0124℄401. Êóäðÿøîâ Í.À., Ìåòîäû íåëèíåéíîé ìàòåìàòè÷åñêîé èçèêè. Ì: ÌÈÔÈ, 2008. 352 ñ.402. Boisseau B., Giaomini H., Polarski D., Starobinsky A.A., Bouning317Universes in SalarTensor Gravity Models admitting Negative Potentials //arXiv:1504.07927.403. Bars I., Chen S.H. The Big Bang and Ination United by an Analyti Solution// Physial Review D. 2011. Vol.
83. P. 043522. [arXiv:1004.0752℄404. Bars I., Chen S.H., Steinhardt P.J., Turok N. Complete Set of HomogeneousIsotropi Analyti Solutions in Salar-Tensor Cosmology with Radiationand Curvature // Physial Review D. 2012. Vol. 86 P. 083542.[arXiv:1207.1940℄405. Arefeva I.Ya., Piskovskiy E.V., Volovih I.V., Rolling in the Higgs Model andEllipti Funtions // Theor. Math. Phys. 2012. Vol. 172 P.
1001.[arXiv:1202.4395℄.406. Alimi J.M., Golubtsova A.A., Reverdy V. Ellipti solutions of generalizedBransDike gravity with a non-universal oupling // Eur. Phys. J. C 2014. Vol. 74. P. 3125. [arXiv:1311.6384℄.407. Erolani N., Siggia E.D. Painleve property and integrability // Phys. Lett. A. 1986. Vol. 119. P. 112408. Yoshida H. Neessary ondition for the existene of algebrai rst integrals //Celest. Meh. 1983. Vol. 31. P.