Диссертация (1097926), страница 43
Текст из файла (страница 43)
Leah P.G.L., Cotsakis S., Miritzis J., Symmetry, singularities andintegrability in omplex dynamis. 7: Integrability properties of FRW296salar osmologies // Grav. Cosmol. 2001. Vol. 7. P. 311.[arXiv:gr-q/0107038℄.187. MiritzisJ.,LeahP.G.L.,CotsakisS.,Symmetry,singularitiesand integrability in omplex dynamis. 4: Painleve integrability ofisotropi osmologies // Grav. Cosmol. 2000. Vol. 6. P.
282[arXiv:gr-q/0011019℄.188. Salopek D.S., Bond J.R., Nonlinear evolution of long-wavelength metriutuations in inationary models // Physial Review D 1990. Vol. 42. P. 39363962189. Muslimov A.G., On the Salar Field Dynamis in a Spatially Flat FriedmanUniverse // Class. Quant. Grav. 1990. Vol. 7. P. 231237.190. Zhuravlev V.M., Chervon S.V., Shhigolev V.K., New lasses of exat solutionsin inationary osmology // J. Exp. Theor. Phys.
1998. Vol. 87. P. 223.191. Townsend P.K., Hamilton-Jaobi Mehanis from Pseudo-Supersymmetry //Class. Quant. Grav. 2008. Vol. 25. P. 045017. [arXiv:0710.5178℄192. Þðîâ À.Â., Þðîâ Â.À., ×åðâîí Ñ.Â., Ñàìè Ì. Ïîòåíöèàë ïîëíîé ýíåðãèèêàê ñóïåðïîòåíöèàë â èíòåãðèðóåìûõ êîñìîëîãè÷åñêèõ ìîäåëÿõ // Òåîð.Ìàò. Ôèç. 2011 Òîì 166, No. 2 C. 299311.193. Kamenshhik A.Yu., Manti S., Salar eld potentials for losed and openosmologial models // Gen. Rel. Grav. 2012 Vol. 44. P. 22052214.[arXiv:1111.5183℄194. Bazeia D., Gomes C.B., Losano L., Menezes R., First-order formalismand dark energy // Phys. Lett.
B 2006 Vol. 633 P. 415419.[arXiv:astro-ph/0512197℄195. Bazeia D., Losano L., Rosenfeld R., First-order formalism for dust // Eur.Phys. J. C 2008 Vol. 55. P. 113117. [arXiv:astro-ph/0611770℄196. Andrianov A.A., Cannata F., Kamenshhik A.Yu., Regoli D., Reonstrutionof salar potentials in two-eld osmologial models // J. Cosmol.
Astropart.Phys. 2008. Vol. 0802. P. 015. [arXiv:0711.4300℄297197. Setare M.R., Sadeghi J., First-order formalism for the quintom model ofdark energy // Int. J. Theor. Phys. 2008. Vol. 47. P. 32193225.[arXiv:0805.1117℄198. Shhigolev V.K., Rotova M.P., Cosmologial model of interating tahyon eld// Mod. Phys. Lett. A 2012. Vol.
27. P. 1250086. [arXiv:1203.5030℄199. Kim H.-Ch., Exat solutions in Einstein osmology with a salar eld // Mod.Phys. Lett. A 2013 Vol. 28. P. 1350089 [arXiv:1211.0604℄200. Harko T., Lobo F.S.N., Mak M.K., Arbitrary salar eld and quintesseneosmologial models // Eur. Phys. J. C 2014 Vol. 74. P. 2784.[arXiv:1310.7167℄201. Randall L., Sundrum R. An alternative to ompatiation. // Phys. Rev.Lett. 1999. Vol. 83. P. 46904693.202. Brandhuber A., Sfetsos K., Nonstandard ompatiations with mass gapsand Newton's law // J.
High Energy Phys. 1999 Vol. 9910. P. 013[arXiv:hep-th/9908116℄203. DeWolfe O., Freedman D.Z., Gubser S.S., Karh A., Modeling the fthdimension with salars and gravity // Physial Review D 2000 Vol. 62. P. 046008. [arXiv:hep-th/9909134℄204. Mikhailov A.S., Mikhailov Y.S., Smolyakov M.N., Volobuev I.P. Construtingstabilized brane world models in ve-dimensional BransDike theory //Classial and Quantum Gravity. 2007. Vol.
24, no. 1. P. 231242.[arXiv:hep-th/0602143℄205. Smolyakov M.N., Volobuev I.P., Single-brane world with stabilized extradimension // International Journal of Modern Physis A. 2008. Vol.23, no. 5. P. 761775. [arXiv:0705.4495℄206. GursoyU.,KiritsisE.,MazzantiL.,NittiF.,HolographyandThermodynamis of 5D Dilaton-gravity // J. High Energy Phys. 2009 Vol. 0905. P. 033 [arXiv:0812.0792℄207. Aref'eva I.Ya., Pozdeeva E.O., Pozdeeva T.O. Potentials in modied AdS5298spaes with a moderate inrease in entropy // Theoretial and MathematialPhysis. 2014.
Vol. 180, no. 1. P. 781794. [arXiv:1401.1180℄208. Musette M., Conte R. Analyti solitary waves of nonintegrable equations //Phisia D 2003 Vol. 181. P. 7079, [arXiv:nlin.PS/0302051℄.209. Hone A.N.W. Non-existene of ellipti travelling wave solutions of the omplexGinzburgLandau equation // Physia D 2005. Vol. 205. P. 292.210. Demina M.V., Kudryashov N.A. On ellipti solutions of nonlinear ordinarydierential equations // Applied Mathematis and Computation 2011. Vol. 217. P. 98499853.211. Demina M.V., Kudryashov N.A. Ellipti solutions in the HenonHeiles model// Commun.
Nonlinear Si. Numer. Simul. 2014 Vol. 19 P. 471482[arXiv:1208.0726℄.212. Äåìèíà Ì.Â., Êóäðÿøîâ Í.À., Äâîÿêî-ïåðèîäè÷åñêèå ìåðîìîðíûå ðåøåíèÿ àâòîíîìíûõ íåëèíåéíûõ äèåðåíöèàëüíûõ óðàâíåíèé // Ìîäåë. èàíàëèç èíîðì. ñèñòåì 2014. Vol. 21, No. 5. P. 4960.213. Âåðíîâ Ñ.Þ. Ïîñòðîåíèå ðåøåíèé îáîáùåííîé ñèñòåìû Õåíîíà-Õåéëåñà ñ ïîìîùüþ òåñòà Ïåíëåâå // Òåîð. Ìàò.
Ôèç., 2003. Òîì 135. C. 409419. (Àíãëèéñêèé ïåðåâîä: Vernov S. Construting solutionsfor the generalized HenonHeiles system through the Painleve test //Theoretial and Mathematial Physis. 2003. Vol. 135 P. 792801.[arXiv:math-ph/0209063℄)214. Vernov S.Yu., Timoshkova E.I. On two nonintegrable ases of the generalizedHenonHeiles system // Physis of Atomi Nulei. 2005. Vol. 68, no.11. P. 19471955.
[ßäåðíàÿ Ôèçèêà 2005. Ò. 68. Ñ. 20082016℄[arXiv:math-ph/0402049℄215. Aref'eva I.Ya., Koshelev A.S., Vernov S.Yu. Stringy dark energy model withold dark matter // Physis Letters B. 2005. Vol. 628, no. 12. P.110. (arXiv:astro-ph/0505605)216. Aref'eva I.Ya., Koshelev A.S., Vernov S.Yu., Crossing the w = − 1 barrier in299the D3-brane dark energy model // Physial Review D. 2005. Vol. 72,no. 6.
P. 064017. [arXiv:astro-ph/0507067℄217. Àðåüåâà È.ß., Âåðíîâ Ñ.Þ., Êîøåëåâ À.Ñ., Òî÷íîå åøåíèå â ÑòðóííîéÊîñìîëîãè÷åñêîé Ìîäåëè, Òåîð. Ìàò. Ôèç. 2006 Tîì 148. Ñ. 2341.(Àíãëèéñêèé ïåðåâîä: Aref'eva I.Ya., Koshelev A.S., Vernov S.Yu. Exatsolution in a string osmologial model // Theoretial and MathematialPhysis. 2006. Vol. 148, no. 1. P. 895909. [arXiv:astro-ph/0412619℄)218. Vernov S.Yu. Constrution of speial solutions for nonintegrable systems //Journal of Nonlinear Mathematial Physis.
2006. Vol. 13, no. 1. P.5063. [arXiv:astro-ph/0502356℄.219. Âåðíîâ Ñ.Þ., Äîêàçàòåëüñòâî Îòñóòñòâèÿ Ýëëèïòè÷åñêèõ åøåíèé Êóáè÷åñêîãî Êîìïëåêñíîãî Óðàâíåíèÿ èíçáóðãàËàíäàó // Òåîð. Ìàò. Ôèç. 2006. Òîì 164. Ñ. 161171; (Àíãëèéñêèé ïåðåâîä: Vernov S.Yu. Proofof the absene of ellipti solutions of the ubi omplex GinzburgLandauequation // Theoretial and Mathematial Physis. 2006.
Vol. 146, no.1. P. 131139.)220. Âåðíîâ Ñ.Þ., Ïîñòðîåíèå Òî÷íûõ ×àñòíûõ åøåíèé ÍåèíòåãðèðóåìûõÑèñòåì ñ Ïîìîùüþ Ôîðìàëüíûõ ÿäîâ Ëîðàíà è Ïþèç¼ // Ïðîãðàììèðîâàíèå 2006 Tîì 32, No. 2. ñ. 7783. (Àíãëèéñêèé ïåðåâîä:Vernov S.Yu. Constrution of exat partial solutions of nonintegrable systemsby means of formal Laurent and Puiseux series // Programming and ComputerSoftware. 2006. Vol. 32, no. 2. P. 7783.)221.
Vernov S.Yu. Ellipti solutions of the quinti omplex one-dimensionalGinzburgLandau equation // Journal of Physis A: Mathematial andTheoretial. 2007. Vol. 40, no. 32. P. 98339844. [arXiv:nlin/0602060℄.222. Âåðíîâ Ñ.Þ., Ïîñòðîåíèå òî÷íûõ ðåøåíèé â äâóõïîëåâûõ êîñìîëîãè÷åñêèõ ìîäåëÿõ, Òåîð.
Ìàò. Ôèç. 2008. Tîì 155, no. 1. Ñ. 4761(Àíãëèéñêèé ïåðåâîä: Vernov S.Yu. Constrution of exat solutions in twoeld osmologial models // Theoretial and Mathematial Physis. 2008.300 Vol. 155, no. 1. P. 544556. [arXiv:astro-ph/0612487℄)223. Aref'eva I.Ya., Joukovskaya L.V., Vernov S.Yu. Dynamis in nonloal linearmodels in the FriedmannRobertsonWalker metri // Journal of PhysisA: Mathematial and Theoretial.
2008. Vol. 41, no. 30. P. 304003.[arXiv:0711.1364℄.224. Vernov S.Yu. Loalization of nonloal osmologial models with quadratipotentials in the ase of double roots // Classial and Quantum Gravity. 2010. Vol. 27, no. 3. P. 035006. [arXiv:0907.0468℄.225. Àðåüåâà È.ß., Áóëàòîâ Í.Â., Âåðíîâ Ñ.Þ., Ñòàáèëüíûå òî÷íûå ðåøåíèÿâ êîñìîëîãè÷åñêèõ ìîäåëÿõ ñ äâóìÿ ñêàëÿðíûìè ïîëÿìè, Òåîð. Ìàò. Ôèç. 2010. Vol. 163, no.
3. P. 475494;Aref'eva I.Ya., Bulatov N.V., Vernov S.Yu. Stable exat solutions inosmologial models with two salar elds // Theoretial and MathematialPhysis. 2010. Vol. 163, no. 3. P. 788803.226. Vernov S. Loalization of the SFT inspired nonloal linear models and exatsolutions // Physis of Partiles and Nulei Letters. 2011. Vol. 8, no. 3. P. 310320. [arXiv:1005.0372℄.227. Âåðíîâ Ñ.Þ., Òî÷íûå ðåøåíèÿ íåëîêàëüíûõ íåëèíåéíûõ ïîëåâûõ óðàâíåíèé â êîñìîëîãèè // Òåîð. Ìàò.
Ôèç. 2011. Tîì 166, no. 3. P. 452464;Vernov S.Yu. Exat solutions of nonloal nonlinear eld equations inosmology // Theoretial and Mathematial Physis. 2011. Vol. 166,no. 3. P. 392402. [arXiv:1005.5007℄.228. Elizalde E., Pozdeeva E., Vernov S.Yu. De sitter universe in non-loal gravity// Physial Review D - Partiles, Fields, Gravitation and Cosmology. 2012. Vol. 85, no.
4. P. 044002. [arXiv:1110.5806℄229. Vernov S.Yu. Nonloal gravitational models and exat solutions // Physis ofPartiles and Nulei. 2012. Vol. 43, no. 5. P. 694696. [arXiv:1202.1172℄230. Koshelev A. S., Vernov S.Yu. On bouning solutions in non-loal gravity //301Physis of Partiles and Nulei. 2012. Vol. 43, no. 5. P. 666668.[arXiv:1202.1289℄.231. Elizalde E., Pozdeeva E. O., Vernov S.Yu.
Reonstrution proedure innonloal osmologial models // Classial and Quantum Gravity. 2013. Vol. 30, no. 3. P. 035002. [arXiv:1209.5957℄232. Reonstrutionofsalarpotentialsinmodiedgravitymodels/A.Yu. Kamenshhik, A. Trononi, G. Venturi, and S.Yu. Vernov // PhysialReview D 2013. Vol. 87, no. 6. P. 063503. [arXiv:1211.6272℄233. Cosmologial solutions of a nonloal model with a perfet uid / E.